ﻻ يوجد ملخص باللغة العربية
A novel soliton-like solution in quantum electrodynamics is obtained via a self-consistent field method. By writing the Hamiltonian of quantum electrodynamics in the Coulomb gauge, we separate out a classical component in the density operator of the electron-positron field. Then, by modeling the state vector in analogy with the theory of superconductivity, we minimize the functional for the energy of the system. This results in the equations of the self-consistent field, where the solutions are associated with the collective excitation of the electron-positron field---the soliton-like solution. In addition, the canonical transformation of the variables allowed us to separate out the total momentum of the system and, consequently, to find the relativistic energy dispersion relation for the moving soliton.
More than 15 years ago, a new approach to quantum mechanics was suggested, in which Hermiticity of the Hamiltonian was to be replaced by invariance under a discrete symmetry, the product of parity and time-reversal symmetry, $mathcal{PT}$. It was sho
The Lee-Wick electrodynamics in the vicinity of a conducting plate is investigated. The propagator for the gauge field is calculated and the interaction between the plate and a point-like electric charge is computed. The boundary condition imposed on
We investigate some aspects of the Maxwell-Chern-Simons electrodynamics focusing on physical effects produced by the presence of stationary sources and a perfectly conducting plate (mirror). Specifically, in addition to point charges, we propose two
Quantum parity conservation is verified at all orders in perturbation theory for a massless parity-even $U(1)times U(1)$ planar quantum electrodynamics (QED$_3$) model. The presence of two massless fermions requires the Lowenstein-Zimmermann (LZ) sub
The parity-preserving $U(1)times U(1)$ massless QED$_3$ is proposed as a pristine graphene-like planar quantum electrodynamics model. The spectrum content, the degrees of freedom, spin, masses and charges of the quasiparticles (electron-polaron, hole