ترغب بنشر مسار تعليمي؟ اضغط هنا

Approach to tune near- and far-field properties of hybrid dimer nanoantennas via laser melting at the nanoscale

127   0   0.0 ( 0 )
 نشر من قبل Alexsander Krasnok
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Asymmetric metal-dielectric nanostructures are demonstrated superior optical properties arise from the combination of strong enhancement of their near fields and controllable scattering characteristics which originate from plasmonic and high-index dielectric components. Here, being inspired by the recent experimental work [Dmitry~Zuev, textit{et al.}, Adv. Mater. textbf{28}, 3087 (2016)] on a new technique for fabrication of asymmetric hybrid nanoparticles via femtosecond laser melting at the nanoscale, we suggest and study numerically a novel type of hybrid dimer nanoantennas. The nanoantennas consist of asymmetric metal-dielectric (Au/Si) nanoparticles and can allow tuning of the near- and far-field properties via laser melting of the metal part. We demonstrate a modification of scattering properties, near electric field distribution, normalized local density of states, and power patters of radiation of the nanoantennas upon laser reshaping. The parameters used to investigate these effects correspond to experimentally demonstrated values in the recent work.



قيم البحث

اقرأ أيضاً

Theory predicts a distinct spectral shift between the near- and far-field optical responses of plasmonic antennas. Here we combine near-field optical microscopy and far-field spectroscopy of individual infrared-resonant nanoantennas to verify experim entally this spectral shift. Numerical calculations corroborate our experimental results. We furthermore discuss the implications of this effect in surface-enhanced infrared spectroscopy (SEIRS).
In the past decade, advances in nanotechnology have led to the development of plasmonic nanocavities which facilitate light-matter strong coupling in ambient conditions. The most robust example is the nanoparticle-on-mirror (NPoM) structure whose geo metry is controlled with subnanometer precision. The excited plasmons in such nanocavities are extremely sensitive to the exact morphology of the nanocavity, giving rise to unexpected optical behaviors. So far, most theoretical and experimental studies on such nanocavities have been based solely on their scattering and absorption properties. However, these methods do not provide a complete optical description of a NPoM. Here, the NPoM is treated as an open non-conservative system supporting a set of photonic quasinormal modes (QNMs). By investigating the morphology-dependent optical properties of nanocavities, we propose a simple yet comprehensive nomenclature based on spherical harmonics and report spectrally overlapping bright and dark nanogap eigenmodes. The near-field and far-field optical properties of NPoMs are explored and reveal intricate multi-modal interactions.
We describe an efficient near-field to far-field transformation for optical quasinormal modes, which are the dissipative modes of open cavities and plasmonic resonators with complex eigenfrequencies. As an application of the theory, we show how one c an compute the reservoir modes (or regularized quasinormal modes) outside the resonator, which are essential to use in both classical and quantum optics. We subsequently demonstrate how to efficiently compute the quantum optical parameters necessary in the theory of quantized quasinormal modes [Franke et al., Phys. Rev. Lett. 122, 213901 (2019)]. To confirm the accuracy of our technique, we directly compare with a Dyson equation approach currently used in the literature (in regimes where this is possible), and demonstrate several order of magnitude improvement for the calculation run times. We also introduce an efficient pole approximation for computing the quantized quasinormal mode parameters, since they require an integration over a range of frequencies. Using this approach, we show how to compute regularized quasinormal modes and quantum optical parameters for a full 3D metal dimer in under one minute on a standard desktop computer. Our technique is exemplified by studying the quasinormal modes of metal dimers and a hybrid structure consisting of a gold dimer on top of a photonic crystal beam. In the latter example, we show how to compute the quantum optical parameters that describe a pronounced Fano resonance, using structural geometries that cannot practically be solved using a Dyson equation approach. All calculations for the spontaneous emission rates are confirmed with full-dipole calculations in Maxwells equations and are shown to be in excellent agreement.
93 - Hai Hu , Xiaoxia Yang , Feng Zhai 2016
Infrared spectroscopy, especially for molecular vibrations in the fingerprint region between 600 and 1500 cm-1, is a powerful characterization method for bulk materials. However, molecular fingerprinting at the nanoscale level still remains a signifi cant challenge, due to weak light-matter interaction between micron-wavelengthed infrared light and nano-sized molecules. Here, we demonstrate molecular fingerprinting at the nanoscale level using our specially designed graphene plasmonic structure on CaF2 nanofilm. This structure not only avoids the plasmon-phonon hybridization, but also provides in situ electrically-tunable graphene plasmon covering the entire infrared fingerprint region, which was previously unattainable. In addition, undisturbed and highly-confined graphene plasmon offers simultaneous detection of in-plane and out-of-plane vibrational modes with ultrahigh detection sensitivity down to the sub-monolayer level, significantly pushing the current detection limit of far-field mid-infrared spectroscopy. Our results provide a platform, fulfilling the long-awaited expectation of high sensitivity and selectivity far-field fingerprint detection of nano-scale molecules for numerous applications.
Hybrid nanophotonics based on metal-dielectric nanostructures unifies the advantages of plasmonics and all-dielectric nanophotonics providing strong localization of light, magnetic optical response and specifically designed scattering properties. Her e we demonstrate a novel approach for fabrication of ordered hybrid nanostructures via femtosecond laser melting of asymmetrical metal-dielectric (Au-Si) nanoparticles created by lithographical methods. The approach allows selective reshaping of the metal components of the hybrid nanoparticles without affecting dielectric ones. We apply the developed approach for tuning of the hybrid nanostructures scattering properties in the visible range. The experimental results are supported by molecular dynamics simulation and numerical solving of Maxwell equations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا