ﻻ يوجد ملخص باللغة العربية
Previous literature suggests that the densest structures in the interstellar medium form through colliding flows, but patent evidence of this process is still missing. Recent literature proposes using SiO line emission to trace low-velocity shocks associated with cloud formation through collision. In this paper we investigate the bright and extended SiO(2-1) emission observed along the ~5 pc-long W43-MM1 ridge to determine its origin. We used high angular resolution images of the SiO(2-1) and HCN(1-0) emission lines obtained with the IRAM plateau de Bure (PdBI) interferometer and combined with data from the IRAM 30 m radiotelescope. These data were complemented by a Herschel column density map of the region. We performed spectral analysis of SiO and HCN emission line profiles to identify protostellar outflows and spatially disentangle two velocity components associated with low- and high-velocity shocks. Then, we compared the low-velocity shock component to a dedicated grid of one-dimensional (1D) radiative shock models. We find that the SiO emission originates from a mixture of high-velocity shocks caused by bipolar outflows and low-velocity shocks. Using SiO and HCN emission lines, we extract seven bipolar outflows associated with massive dense cores previously identified within the W43-MM1 mini-starburst cluster. Comparing observations with dedicated Paris-Durham shock models constrains the velocity of the low-velocity shock component from 7 to 12km/s. The SiO arising from low-velocity shocks spreads along the complete length of the ridge. Its contribution represents at least 45% and up to 100% of the total SiO emission depending on the area considered. The low-velocity component of SiO is most likely associated with the ridge formation through colliding flows or cloud-cloud collision.
The formation of high-mass stars is tightly linked to that of their parental clouds. We here focus on the high-density parts of W43, a molecular cloud undergoing an efficient event of formation. The cloud structure is studied with a column density im
Context: Star formation efficiency (SFE) theories are currently based on statistical distributions of turbulent cloud structures and a simple model of star formation from cores. They remain poorly tested, especially at the highest densities. Aims: We
Aims. To constrain the physical processes that lead to the birth of high-mass stars it is mandatory to study the very first stages of their formation. We search for high-mass analogs of low-mass prestellar cores in W43-MM1. Methods. We conducted a
Here we present the first results from ALMA observations of 1 mm polarized dust emission towards the W43-MM1 high mass star forming clump. We have detected a highly fragmented filament with source masses ranging from 14Msun to 312Msun, where the larg
We present submillimeter spectral line and dust continuum polarization observations of a remarkable hot core and multiple outflows in the high-mass star-forming region W43-MM1 (G30.79 FIR 10), obtained using the Submillimeter Array (SMA). A temperatu