ترغب بنشر مسار تعليمي؟ اضغط هنا

Detection of a high-mass prestellar core candidate in W43-MM1

70   0   0.0 ( 0 )
 نشر من قبل Thomas Nony
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Aims. To constrain the physical processes that lead to the birth of high-mass stars it is mandatory to study the very first stages of their formation. We search for high-mass analogs of low-mass prestellar cores in W43-MM1. Methods. We conducted a 1.3 mm ALMA mosaic of the complete W43-MM1 cloud, which has revealed numerous cores with ~ 2000 au FWHM sizes. We investigated the nature of cores located at the tip of the main filament, where the clustering is minimum. We used the continuum emission to measure the core masses and the $^{13}$CS(5-4) line emission to estimate their turbulence level. We also investigated the prestellar or protostellar nature of these cores by searching for outflow signatures traced by CO(2-1) and SiO(5-4) line emission, and for molecular complexity typical of embedded hot cores. Results. Two high-mass cores of ~ 1300 au diameter and ~ $60~M_odot$ mass are observed to be turbulent but gravitationally bound. One drives outflows and is associated with a hot core. The other core, W43-MM1#6, does not yet reveal any star formation activity and thus is an excellent high-mass prestellar core candidate.



قيم البحث

اقرأ أيضاً

Complex organic molecules (COMs) are detected in many regions of the interstellar medium, including prestellar cores. However, their formation mechanisms in cold (~10 K) cores remain to this date poorly understood. The formyl radical HCO is an import ant candidate precursor for several O-bearing terrestrial COMs in cores, as an abundant building block of many of these molecules. Several chemical routes have been proposed to account for its formation, both on grain surfaces, as an incompletely hydrogenated product of H addition to frozen-out CO molecules, or in the gas phase, either the product of the reaction between H2CO and a radical, or as a product of dissociative recombination of protonated formaldehyde H2COH+. The detection and abundance determination of H2COH+, if present, could provide clues as to whether this latter scenario might apply. We searched for protonated formaldehyde H2COH+ in the prestellar core L1689B using the IRAM 30m telescope. The H2COH+ ion is unambiguously detected, for the first time in a cold (~10 K) source. The derived abundance agrees with a scenario in which the formation of H2COH+ results from the protonation of formaldehyde. We use this abundance value to constrain the branching ratio of the dissociative recombination of H2COH+ towards the HCO channel to ~10-30%. This value could however be smaller if HCO can be efficiently formed from gas-phase neutral-neutral reactions, and we stress the need for laboratory measurements of the rate constants of these reactions at 10 K. Given the experimental difficulties in measuring branching ratios experimentally, observations can bring valuable constraints on these values, and provide a useful input for chemical networks.
113 - T. K. Sridharan , R. Rao , K. Qiu 2013
We present submillimeter spectral line and dust continuum polarization observations of a remarkable hot core and multiple outflows in the high-mass star-forming region W43-MM1 (G30.79 FIR 10), obtained using the Submillimeter Array (SMA). A temperatu re of $sim$ 400 K is estimated for the hot-core using CH$_3$CN (J=19-18) lines, with detections of 11 K-ladder components. The high temperature and the mass estimates for the outflows indicate high-mass star-formation. The continuum polarization pattern shows an ordered distribution, and its orientation over the main outflow appears aligned to the outflow. The derived magnetic field indicates slightly super-critical conditions. While the magnetic and outflow energies are comparable, the B-field orientation appears to have changed from parsec scales to $sim$ 0.1 pc scales during the core/star-formation process.
136 - B. Parise , A. Belloche , F. Du 2010
Context: In the last years, the H2D+ and D2H+ molecules have gained great attention as probes of cold and depleted dense molecular cloud cores. These ions are at the basis of molecular deuterium fractionation, a common characteristic observed in star forming regions. H2D+ is now routinely observed, but the search for its isotopologue D2H+ is still difficult because of the high frequency of its ground para transition (692 GHz). Aims: We have observed molecular transitions of H2D+ and D2H+ in a cold prestellar core to characterize the roots of deuterium chemistry. Methods: Thanks to the sensitive multi-pixel CHAMP+ receiver on the APEX telescope where the required excellent weather conditions are met, we not only successfully detect D2H+ in the H-MM1 prestellar core located in the L1688 cloud, but also obtain information on the spatial extent of its emission. We also detect H2D+ at 372 GHz in the same source. We analyse these detections using a non-LTE radiative transfer code and a state-of-the-art spin-dependent chemical model. Results: This observation is the first secure detection of D2H+ in space. The emission is moreover extended over several pixels of the CHAMP+ array, i.e. on a scale of at least 40, corresponding to ~ 4800 AU. We derive column densities on the order of 1e12-1e13 cm-2 for both molecules in the LTE approximation depending on the assumed temperature, and up to two orders of magnitude higher based on a non-LTE analysis. Conclusions: Our modeling suggests that the level of CO depletion must be extremely high (>10, and even >100 if the temperature of the core is around 10 K) at the core center, in contradiction with CO depletion levels directly measured in other cores. Observation of the H2D+ spatial distribution and direct measurement of the CO depletion in H-MM1 will be essential to confirm if present chemical models investigating the basis of deuterium [...].
Previous literature suggests that the densest structures in the interstellar medium form through colliding flows, but patent evidence of this process is still missing. Recent literature proposes using SiO line emission to trace low-velocity shocks as sociated with cloud formation through collision. In this paper we investigate the bright and extended SiO(2-1) emission observed along the ~5 pc-long W43-MM1 ridge to determine its origin. We used high angular resolution images of the SiO(2-1) and HCN(1-0) emission lines obtained with the IRAM plateau de Bure (PdBI) interferometer and combined with data from the IRAM 30 m radiotelescope. These data were complemented by a Herschel column density map of the region. We performed spectral analysis of SiO and HCN emission line profiles to identify protostellar outflows and spatially disentangle two velocity components associated with low- and high-velocity shocks. Then, we compared the low-velocity shock component to a dedicated grid of one-dimensional (1D) radiative shock models. We find that the SiO emission originates from a mixture of high-velocity shocks caused by bipolar outflows and low-velocity shocks. Using SiO and HCN emission lines, we extract seven bipolar outflows associated with massive dense cores previously identified within the W43-MM1 mini-starburst cluster. Comparing observations with dedicated Paris-Durham shock models constrains the velocity of the low-velocity shock component from 7 to 12km/s. The SiO arising from low-velocity shocks spreads along the complete length of the ridge. Its contribution represents at least 45% and up to 100% of the total SiO emission depending on the area considered. The low-velocity component of SiO is most likely associated with the ridge formation through colliding flows or cloud-cloud collision.
Here we present the first results from ALMA observations of 1 mm polarized dust emission towards the W43-MM1 high mass star forming clump. We have detected a highly fragmented filament with source masses ranging from 14Msun to 312Msun, where the larg est fragment, source A, is believed to be one of the most massive in our Galaxy. We found a smooth, ordered, and detailed polarization pattern throughout the filament which we used to derived magnetic field morphologies and strengths for 12 out of the 15 fragments detected ranging from 0.2 to 9 mG. The dynamical equilibrium of each fragment was evaluated finding that all the fragments are in a super-critical state which is consistent with previously detected infalling motions towards W43-MM1. Moreover, there are indications suggesting that the field is being dragged by gravity as the whole filament is collapsing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا