ترغب بنشر مسار تعليمي؟ اضغط هنا

$f(T)$ gravitational baryogenesis

78   0   0.0 ( 0 )
 نشر من قبل Emmanuil Saridakis
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate how baryogenesis can occur by the presence of an $f(T)$-related gravitational term. We study various cases of $f(T)$ gravity and we discuss in detail the effect of the novel terms on the baryon-to-entropy ratio. Additionally, we study the constraints imposed by the observational values of the baryon-to-entropy ratio and we discuss how more generalized cosmologies can contribute successfully, in a viable and consistent way, in the gravitational baryogenesis mechanism.



قيم البحث

اقرأ أيضاً

In this work, we investigate gravitational baryogenesis in the framework of $f(P)$ gravity to understand the applicability of this class of modified gravity in addressing the baryon asymmetry of the Universe. For the analysis, we set $f(P) = alpha P$ where $alpha$ is the model parameter. We found that in $f(P)$ gravity, the CP-violating interaction acquires a modification through the addition of the nontopological cubic term $P$ in addition to the Ricci scalar $R$ and the mathematical expression of the baryon-to-entropy ratio depends not only on the time derivative of $R$ but also the time derivative of $P$. Additionally, we also investigate the consequences of a more complete and generalized CP-violating interaction proportional to $f(P)$ instead of $P$ in addressing the baryon asymmetry of the Universe. For this type of interaction, we report that the baryon-to-entropy ratio is proportional to $dot{R}$, $dot{P}$ and $f^{}(P)$. We report that for both of these cases, rational values of $alpha$ and $chi$ generate acceptable baryon-to-entropy ratios compatible with observations.
The article presents modeling of inflationary scenarios for the first time in the $f(R,T)$ theory of gravity. We assume the $f(R,T)$ functional from to be $R + eta T$, where $R$ denotes the Ricci scalar, $T$ the trace of the energy-momentum tensor an d $eta$ the model parameter (constant). We first investigated an inflationary scenario where the inflation is driven purely due to geometric effects outside of GR. We found the inflation observables to be independent of the number of e-foldings in this setup. The computed value of the spectral index is consistent with latest Planck 2018 dataset while the scalar to tensor ratio is a bit higher. We then proceeded to analyze the behavior of an inflation driven by $f(R,T)$ gravity coupled with a real scalar field. By taking the slow-roll approximation, we generated interesting scenarios where a Klein Gordon potential leads to observationally consistent inflation observables. Our results makes it clear-cut that in addition to the Ricci scalar and scalar fields, the trace of energy momentum tensor also play a major role in driving inflationary scenarios.
The evolution of the configurational entropy of the universe relies on the growth rate of density fluctuations and on the Hubble parameter. In this work, I present the evolution of configurational entropy for the power-law $f(T)$ gravity model of the form $f(T) = zeta (-T)^ b$, where, $zeta = (6 H_{0}^{2})^{(1-s)}frac{Omega_{P_{0}}}{2 s -1}$ and $b$ a free parameter. From the analysis, I report that the configurational entropy in $f(T)$ gravity is negative and decreases with increasing scale factor and therefore consistent with an accelerating universe. The decrease in configurational entropy is the highest when $b$ vanishes since the effect of dark energy is maximum when $b=0$. Additionally, I find that as the parameter $b$ increases, the growth rate, growing mode, and the matter density parameter evolve slowly whereas the Hubble parameter evolves rapidly. The rapid evolution of the Hubble parameter in conjunction with the growth rate for the $b=0$ may provide an explanation for the large dissipation of configurational entropy.
The $f(T,T_G)$ class of gravitational modification, based on the quadratic torsion scalar $T$, as well as on the new quartic torsion scalar $T_G$ which is the teleparallel equivalent of the Gauss-Bonnet term, is a novel theory, different from both $f (T)$ and $f(R,G)$ ones. We perform a detailed dynamical analysis of a spatially flat universe governed by the simplest non-trivial model of $f(T,T_G)$ gravity which does not introduce a new mass scale. We find that the universe can result in dark-energy dominated, quintessence-like, cosmological-constant-like or phantom-like solutions, according to the parameter choices. Additionally, it may result to a dark energy - dark matter scaling solution, and thus it can alleviate the coincidence problem. Finally, the analysis at infinity reveals that the universe may exhibit future, past, or intermediate singularities depending on the parameters.
We investigate the cosmological applications of $F(T,T_G)$ gravity, which is a novel modified gravitational theory based on the torsion invariant $T$ and the teleparallel equivalent of the Gauss-Bonnet term $T_{G}$. $F(T,T_{G})$ gravity differs from both $F(T)$ theories as well as from $F(R,G)$ class of curvature modified gravity, and thus its corresponding cosmology proves to be very interesting. In particular, it provides a unified description of the cosmological history from early-times inflation to late-times self-acceleration, without the inclusion of a cosmological constant. Moreover, the dark energy equation-of-state parameter can be quintessence or phantom-like, or experience the phantom-divide crossing, depending on the parameters of the model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا