ترغب بنشر مسار تعليمي؟ اضغط هنا

A Search Algorithm for Simplicial Complexes

64   0   0.0 ( 0 )
 نشر من قبل Subhrajit Bhattacharya
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the `Basic S* algorithm for computing shortest path through a metric simplicial complex. In particular, given a metric graph, $G$, which is constructed as a discrete representation of an underlying configuration space (a larger continuous space/manifold typically of dimension greater than one), we consider the Rips complex, $mathcal{R}(G)$, associated with it. Such a complex, and hence shortest paths in it, represent the underlying metric space more closely than what the graph does. While discrete graph representations of continuous spaces is convenient for motion planning in configuration spaces of robotic systems, the metric induced in them by the ambient configuration space is significantly different from the metric of the configuration space itself. We remedy this problem using the simplicial complex representation. Our algorithm requires only an abstract graph, $G=(V,E)$, and a cost/length function, $d:Erightarrow mathbb{R}_+$, as inputs, and no global information such as an embedding or a global coordinate chart is required. The complexity of the Basic S* algorithm is comparable to that of Dijkstras search, but, as the results presented in this paper demonstrate, the shortest paths obtained using the proposed algorithm represent/approximate the geodesic paths in the original metric space significantly more closely.



قيم البحث

اقرأ أيضاً

106 - Fabio Dias 2014
In this work we study the framework of mathematical morphology on simplicial complex spaces. Simplicial complexes are widely used to represent multidimensional data, such as meshes, that are two dimensional complexes, or graphs, that can be interpret ed as one dimensional complexes. Mathematical morphology is one of the most powerful frameworks for image processing, including the processing of digital structures, and is heavily used for many applications. However, mathematical morphology operators on simplicial complex spaces is not a concept fully developed in the literature. Specifically, we explore properties of the dimensional operators, small, versatile operators that can be used to define new operators on simplicial complexes, while maintaining properties from mathematical morphology. These operators can also be used to recover many morphological operators from the literature. Matlab code and additional material, including the proofs of the original properties, are freely available at url{https://code.google.com/p/math-morpho-simplicial-complexes.}
Given a simplicial complex K with weights on its simplices and a chain on it, the Optimal Homologous Chain Problem (OHCP) is to find a chain with minimal weight that is homologous (over the integers) to the given chain. The OHCP is NP-complete, but i f the boundary matrix of K is totally unimodular (TU), it becomes solvable in polynomial time when modeled as a linear program (LP). We define a condition on the simplicial complex called non total-unimodularity neutralized, or NTU neutralized, which ensures that even when the boundary matrix is not TU, the OHCP LP must contain an integral optimal vertex for every input chain. This condition is a property of K, and is independent of the input chain and the weights on the simplices. This condition is strictly weaker than the boundary matrix being TU. More interestingly, the polytope of the OHCP LP may not be integral under this condition. Still, an integral optimal vertex exists for every right-hand side, i.e., for every input chain. Hence a much larger class of OHCP instances can be solved in polynomial time than previously considered possible. As a special case, we show that 2-complexes with trivial first homology group are guaranteed to be NTU neutralized.
In the spirit of topological entropy we introduce new complexity functions for general dynamical systems (namely groups and semigroups acting on closed manifolds) but with an emphasis on the dynamics induced on simplicial complexes. For expansive sys tems remarkable properties are observed. Known examples are revisited and new examples are presented.
Simplicial complexes are a versatile and convenient paradigm on which to build all the tools and techniques of the logic of knowledge, on the assumption that initial epistemic models can be described in a distributed fashion. Thus, we can define: kno wledge, belief, bisimulation, the group notions of mutual, distributed and common knowledge, and also dynamics in the shape of simplicial action models. We give a survey on how to interpret all such notions on simplicial complexes, building upon the foundations laid in prior work by Goubault and others.
We provide a random simplicial complex by applying standard constructions to a Poisson point process in Euclidean space. It is gigantic in the sense that - up to homotopy equivalence - it almost surely contains infinitely many copies of every compact topological manifold, both in isolation and in percolation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا