ترغب بنشر مسار تعليمي؟ اضغط هنا

Achieving the Gaussian Rate-Distortion Function by Prediction

447   0   0.0 ( 0 )
 نشر من قبل Yuval Kochman
 تاريخ النشر 2008
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The water-filling solution for the quadratic rate-distortion function of a stationary Gaussian source is given in terms of its power spectrum. This formula naturally lends itself to a frequency domain test-channel realization. We provide an alternative time-domain realization for the rate-distortion function, based on linear prediction. This solution has some interesting implications, including the optimality at all distortion levels of pre/post filtered vector-quantized differential pulse code modulation (DPCM), and a duality relationship with decision-feedback equalization (DFE) for inter-symbol interference (ISI) channels.



قيم البحث

اقرأ أيضاً

The objective of this paper is to further investigate various applications of information Nonanticipative Rate Distortion Function (NRDF) by discussing two working examples, the Binary Symmetric Markov Source with parameter $p$ (BSMS($p$)) with Hammi ng distance distortion, and the multidimensional partially observed Gaussian-Markov source. For the BSMS($p$), we give the solution to the NRDF, and we use it to compute the Rate Loss (RL) of causal codes with respect to noncausal codes. For the multidimensional Gaussian-Markov source, we give the solution to the NRDF, we show its operational meaning via joint source-channel matching over a vector of parallel Gaussian channels, and we compute the RL of causal and zero-delay codes with respect to noncausal codes.
The rate-distortion-perception function (RDPF; Blau and Michaeli, 2019) has emerged as a useful tool for thinking about realism and distortion of reconstructions in lossy compression. Unlike the rate-distortion function, however, it is unknown whethe r encoders and decoders exist that achieve the rate suggested by the RDPF. Building on results by Li and El Gamal (2018), we show that the RDPF can indeed be achieved using stochastic, variable-length codes. For this class of codes, we also prove that the RDPF lower-bounds the achievable rate
In this paper we analyze the joint rate distortion function (RDF), for a tuple of correlated sources taking values in abstract alphabet spaces (i.e., continuous) subject to two individual distortion criteria. First, we derive structural properties of the realizations of the reproduction Random Variables (RVs), which induce the corresponding optimal test channel distributions of the joint RDF. Second, we consider a tuple of correlated multivariate jointly Gaussian RVs, $X_1 : Omega rightarrow {mathbb R}^{p_1}, X_2 : Omega rightarrow {mathbb R}^{p_2}$ with two square-error fidelity criteria, and we derive additional structural properties of the optimal realizations, and use these to characterize the RDF as a convex optimization problem with respect to the parameters of the realizations. We show that the computation of the joint RDF can be performed by semidefinite programming. Further, we derive closed-form expressions of the joint RDF, such that Grays [1] lower bounds hold with equality, and verify their consistency with the semidefinite programming computations.
The rate-distortion dimension (RDD) of an analog stationary process is studied as a measure of complexity that captures the amount of information contained in the process. It is shown that the RDD of a process, defined as two times the asymptotic rat io of its rate-distortion function $R(D)$ to $log {1over D}$ as the distortion $D$ approaches zero, is equal to its information dimension (ID). This generalizes an earlier result by Kawabata and Dembo and provides an operational approach to evaluate the ID of a process, which previously was shown to be closely related to the effective dimension of the underlying process and also to the fundamental limits of compressed sensing. The relation between RDD and ID is illustrated for a piecewise constant process.
This paper takes a rate-distortion approach to understanding the information-theoretic laws governing cache-aided communications systems. Specifically, we characterise the optimal tradeoffs between the delivery rate, cache capacity and reconstruction distortions for a single-user problem and some special cases of a two-user problem. Our analysis considers discrete memoryless sources, expected- and excess-distortion constraints, and separable and f-separable distortion functions. We also establish a strong converse for separable-distortion functions, and we show that los
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا