ترغب بنشر مسار تعليمي؟ اضغط هنا

Interlayer breathing and shear modes in NbSe2 atomic layers

93   0   0.0 ( 0 )
 نشر من قبل Chun Hung Lui
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Atomically thin NbSe2 is a metallic layered transition metal dichalcogenide (TMD) with considerably different crystallographic structure and electronic properties from other TMDs, such as MoS2, MoSe2, WS2 and WSe2. Properties of TMD atomic layers are sensitive to interlayer coupling. Here we investigate the interlayer phonons of few-layer NbSe2 by ultralow-frequency Raman spectroscopy. We observe both the interlayer breathing modes and shear modes at frequencies below 40 cm-1 for samples of 2 to 15 layers. Their frequency, Raman activity, and environmental instability depend systematically on the layer number. We account for these results utilizing a combination of the linear-chain model, group-theory analysis and first-principles calculations. Although NbSe2 possesses different stacking order from MoS2, MoSe2, WS2 and WSe2, it exhibits the same symmetry and Raman selection rules, as well as similar interlayer coupling strength and thickness dependence of interlayer phonon modes.

قيم البحث

اقرأ أيضاً

In this work, we study structural and vibrational properties of multilayer graphene using density-functional theory (DFT) with van der Waals (vdW) functionals. Initially, we analyze how different vdW functionals compare by evaluating the lattice para meters, elastic constants and vibrational frequencies of low energy optical modes of graphite. Our results indicate that the vdW-DF1-optB88 functional has the best overall performance on the description of vibrational properties. Next, we use this functional to study the influence of the vdW interactions on the structural and vibrational properties of multilayer graphene. Specifically, we evaluate binding energies, interlayer distances and phonon frequencies of layer breathing and shear modes. We observe excellent agreement between our calculated results and available experimental data, which suggests that this functional has truly predictive power for layer-breathing and shear frequencies that have not been measured yet. This indicates that careful selected vdW functionals can describe interlayer bonding in graphene-related systems with good accuracy.
We perform an optical spectroscopy study to investigate the properties of different artificial MoS$_2$ bi- and trilayer stacks created from individual monolayers by a deterministic transfer process. These twisted bi- and trilayers differ from the com mon 2H stacking in mineral MoS$_2$ in the relative stacking angle of adjacent layers and the interlayer distance. The combination of Raman spectroscopy, second-harmonic-generation microscopy and photoluminescence measurements allows us to determine the degree of interlayer coupling in our samples. We find that even for electronically decoupled artificial structures, which show the same valley polarization degree as the constituent MoS$_2$ monolayers at low temperatures, there is a resonant energy transfer between individual layers which acts as an effective luminescence quenching mechanism.
Moire superlattices in van der Waals heterostructures have emerged as a powerful tool for engineering novel quantum phenomena. Here we report the observation of a correlated interlayer exciton insulator in a double-layer heterostructure composed of a WSe2 monolayer and a WS2/WSe2 moire bilayer that are separated by an ultrathin hexagonal boron nitride (hBN). The moire WS2/WSe2 bilayer features a Mott insulator state at hole density p/p0 = 1, where p0 corresponds to one hole per moire lattice site. When electrons are added to the Mott insulator in the WS2/WSe2 moire bilayer and an equal number of holes are injected into the WSe2 monolayer, a new interlayer exciton insulator emerges with the holes in the WSe2 monolayer and the electrons in the doped Mott insulator bound together through interlayer Coulomb interactions. The excitonic insulator is stable up to a critical hole density of ~ 0.5p0 in the WSe2 monolayer, beyond which the system becomes metallic. Our study highlights the opportunities for realizing novel quantum phases in double-layer moire systems due to the interplay between the moire flat band and strong interlayer electron interactions.
ReS$_2$ has recently emerged as a new member in the rapidly growing family of two-dimensional materials. Unlike MoS$_2$ or WSe$_2$, the optical and electrical properties of ReS$_2$ are not isotropic due to the reduced symmetry of the crystal. Here, w e present layer-dependent Raman measurements of ReS$_2$ samples ranging from monolayers to ten layers in the ultralow frequency regime. We observe layer breathing and shear modes which allow for easy assignment of the number of layers. Polarization-dependent measurements give further insight into the crystal structure and reveal an energetic shift of the shear mode which stems from the in-plane anisotropy of the shear modulus in this material.
Moire superlattices can induce correlated-electronic phases in twisted van-der-Waals materials. Strongly correlated quantum phenomena emerge, such as superconductivity and the Mott-insulating state. However, moire superlattices produced through artif icial stacking can be quite inhomogeneous, which hampers the development of a clear correlation between the moire period and the emerging electrical and optical properties. Here we demonstrate in twisted-bilayer transition-metal dichalcogenides that low-frequency Raman scattering can be utilized not only to detect atomic reconstruction, but also to map out the inhomogeneity of the moire lattice over large areas. The method is established based on the finding that both the interlayer-breathing mode and moire phonons are highly susceptible to the moire period and provide characteristic fingerprints. We visualize microscopic domains with an effective twist-angle resolution of ~0.1{deg}. This ambient non-invasive methodology can be conveniently implemented to characterize and preselect high-quality areas of samples for subsequent device fabrication, and for transport and optical experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا