ﻻ يوجد ملخص باللغة العربية
A graph $G$ with a group $H$ of automorphisms acting semiregularly on the vertices with two orbits is called a {em bi-Cayley graph} over $H$. When $H$ is a normal subgroup of $Aut(G)$, we say that $G$ is {em normal} with respect to $H$. In this paper, we show that every finite group has a connected normal bi-Cayley graph. This improves Theorem~5 of [M. Arezoomand, B. Taeri, Normality of 2-Cayley digraphs, Discrete Math. 338 (2015) 41--47], and provides a positive answer to the Question of the above paper.
A graph $G$ admitting a group $H$ of automorphisms acting semi-regularly on the vertices with exactly two orbits is called a {em bi-Cayley graph/} over $H$. Such a graph $G$ is called {em normal/} if $H$ is normal in the full automorphism group of $G
In this paper, we construct an infinite family of normal Cayley graphs, which are $2$-distance-transitive but neither distance-transitive nor $2$-arc-transitive. This answers a question raised by Chen, Jin and Li in 2019 and corrects a claim in a literature given by Pan, Huang and Liu in 2015.
We prove an upper bound on the number of pairwise strongly cospectral vertices in a normal Cayley graph, in terms of the multiplicities of its eigenvalues. We use this to determine an explicit bound in Cayley graphs of $mathbb{Z}_2^d$ and $mathbb{Z}_
A graph $G=(V,E)$ is total weight $(k,k)$-choosable if the following holds: For any list assignment $L$ which assigns to each vertex $v$ a set $L(v)$ of $k$ real numbers, and assigns to each edge $e$ a set $L(e)$ of $k$ real numbers, there is a prope
We prove that every tetrahedron T has a simple, closed quasigeodesic that passes through three vertices of T. Equivalently, every T has a face whose exterior angles are at most pi.