ﻻ يوجد ملخص باللغة العربية
We successfully demonstrate a quantum gas microscopy using the Faraday effect which has an inherently non-destructive nature. The observed Faraday rotation angle reaches 3.0(2) degrees for a single atom. We reveal the non-destructive feature of this Faraday imaging method by comparing the detuning dependence of the Faraday signal strength with that of the photon scattering rate. We determine the atom distribution with deconvolution analysis. We also demonstrate the absorption and the dark field Faraday imaging, and reveal the different shapes of the point spread functions for these methods, which are fully explained by theoretical analysis. Our result is an important first step towards an ultimate quantum non-demolition site-resolved imaging and furthermore opens up the possibilities for quantum feedback control of a quantum many-body system with a single-site resolution.
Quantum gas microscopes have expanded the capabilities of quantum simulation of Hubbard models by enabling the study of spatial spin and density correlations in square lattices. However, quantum gas microscopes have not been realized for fermionic at
We demonstrate site-resolved imaging of individual bosonic $^{174}mathrm{Yb}$ atoms in a Hubbard-regime two-dimensional optical lattice with a short lattice constant of 266 nm. To suppress the heating by probe light with the $^1S_0$-$^1P_1$ transitio
Ghost imaging is a technique -- first realized in quantum optics -- in which the image emerges from cross-correlation between particles in two separate beams. One beam passes through the object to a bucket (single-pixel) detector, while the second be
The complexity of quantum many-body systems originates from the interplay of strong interactions, quantum statistics, and the large number of quantum-mechanical degrees of freedom. Probing these systems on a microscopic level with single-site resolut
Spin models are the prime example of simplified manybody Hamiltonians used to model complex, real-world strongly correlated materials. However, despite their simplified character, their dynamics often cannot be simulated exactly on classical computer