ﻻ يوجد ملخص باللغة العربية
We describe an algorithm which finds binomials in a given ideal $Isubsetmathbb{Q}[x_1,dots,x_n]$ and in particular decides whether binomials exist in $I$ at all. Binomials in polynomial ideals can be well hidden. For example, the lowest degree of a binomial cannot be bounded as a function of the number of indeterminates, the degree of the generators, or the Castelnuovo--Mumford regularity. We approach the detection problem by reduction to the Artinian case using tropical geometry. The Artinian case is solved with algorithms from computational number theory.
Let $R=mathbf{C}[xi_1,xi_2,ldots]$ be the infinite variable polynomial ring, equipped with the natural action of the infinite symmetric group $mathfrak{S}$. We classify the $mathfrak{S}$-primes of $R$, determine the containments among these ideals, a
Let $I$ be an arbitrary ideal generated by binomials. We show that certain equivalence classes of fibers are associated to any minimal binomial generating set of $I$. We provide a simple and efficient algorithm to compute the indispensable binomials
Given the Hilbert function $u$ of a closed subscheme of a projective space over an infinite field $K$, let $m_u$ and $M_u$ be, respectively, the minimum and the maximum among all the Castelnuovo-Mumford regularities of schemes with Hilbert function $
Let I be either the ideal of maximal minors or the ideal of 2-minors of a row graded or column graded matrix of linear forms L. In two previous papers we showed that I is a Cartwright-Sturmfels ideal, that is, the multigraded generic initial ideal gi
We show that a determinantal ideal generated by $t$-minors does not contain any nonzero polynomials with $t!/2$ or fewer terms. Geometrically this means that any nonzero polynomial vanishing on all matrices of rank at most $t-1$ has more than $t!/2$ terms.