ترغب بنشر مسار تعليمي؟ اضغط هنا

The range of all regularities for polynomial ideals with a given Hilbert function

102   0   0.0 ( 0 )
 نشر من قبل Francesca Cioffi
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English
 تأليف Francesca Cioffi




اسأل ChatGPT حول البحث

Given the Hilbert function $u$ of a closed subscheme of a projective space over an infinite field $K$, let $m_u$ and $M_u$ be, respectively, the minimum and the maximum among all the Castelnuovo-Mumford regularities of schemes with Hilbert function $u$. I show that, for every integer $m$ such that $m_u leq m leq M_u$, there exists a scheme with Hilbert function $u$ and Castelnuovo-Mumford regularity $m$. As a consequence, the analogous algebraic result for an O-sequence $f$ and homogeneous polynomial ideals over $K$ with Hilbert function $f$ holds too. Although this result does not need any explicit computation, I also describe how to compute a scheme with the above requested properties. Precisely, I give a method to construct a strongly stable ideal defining such a scheme.

قيم البحث

اقرأ أيضاً

Using Macaulays correspondence we study the family of Artinian Gorenstein local algebras with fixed symmetric Hilbert function decomposition. As an application we give a new lower bound for cactus varieties of the third Veronese embedding. We discuss the case of cubic surfaces, where interesting phenomena occur.
In this paper, we investigate the behavior of almost reverse lexicographic ideals with the Hilbert function of a complete intersection. More precisely, over a field $K$, we give a new constructive proof of the existence of the almost revlex ideal $Js ubset K[x_1,dots,x_n]$, with the same Hilbert function as a complete intersection defined by $n$ forms of degrees $d_1leq dots leq d_n$. Properties of the reduction numbers for an almost revlex ideal have an important role in our inductive and constructive proof, which is different from the more general construction given by Pardue in 2010. We also detect several cases in which an almost revlex ideal having the same Hilbert function as a complete intersection corresponds to a singular point in a Hilbert scheme. This second result is the outcome of a more general study of lower bounds for the dimension of the tangent space to a Hilbert scheme at stable ideals, in terms of the number of minimal generators.
Let $K$ be an algebraically closed field of null characteristic and $p(z)$ a Hilbert polynomial. We look for the minimal Castelnuovo-Mumford regularity $m_{p(z)}$ of closed subschemes of projective spaces over $K$ with Hilbert polynomial $p(z)$. Expe rimental evidences led us to consider the idea that $m_{p(z)}$ could be achieved by schemes having a suitable minimal Hilbert function. We give a constructive proof of this fact. Moreover, we are able to compute the minimal Castelnuovo-Mumford regularity $m_p(z)^{varrho}$ of schemes with Hilbert polynomial $p(z)$ and given regularity $varrho$ of the Hilbert function, and also the minimal Castelnuovo-Mumford regularity $m_u$ of schemes with Hilbert function $u$. These results find applications in the study of Hilbert schemes. They are obtained by means of minimal Hilbert functions and of two new constructive methods which are based on the notion of growth-height-lexicographic Borel set and called ideal graft and extended lifting.
Let $R=mathbf{C}[xi_1,xi_2,ldots]$ be the infinite variable polynomial ring, equipped with the natural action of the infinite symmetric group $mathfrak{S}$. We classify the $mathfrak{S}$-primes of $R$, determine the containments among these ideals, a nd describe the equivariant spectrum of $R$. We emphasize that $mathfrak{S}$-prime ideals need not be radical, which is a primary source of difficulty. Our results yield a classification of $mathfrak{S}$-ideals of $R$ up to copotency. Our work is motivated by the interest and applications of $mathfrak{S}$-ideals seen in recent years.
Let $G$ be a finite simple graph on $n$ vertices and $J_G$ denote the corresponding binomial edge ideal in the polynomial ring $S = K[x_1, ldots, x_n, y_1, ldots, y_n].$ In this article, we compute the Hilbert series of binomial edge ideal of decompo sable graphs in terms of Hilbert series of its indecomposable subgraphs. Also, we compute the Hilbert series of binomial edge ideal of join of two graphs and as a consequence we obtain the Hilbert series of complete $k$-partite graph, fan graph, multi-fan graph and wheel graph.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا