ﻻ يوجد ملخص باللغة العربية
Probes for the small-x parton densities and predicted effects of gluon saturation are discussed. At very low x and intermediate Q, only results on hadronic observables at the LHC are available, which do not provide unambiguous information. It is shown that the measurement of direct photons at forward rapidity at the LHC is particularly promising to provide a unique signal. We further discuss the possibilities to perform such measurements with a detector upgrade in the ALICE experiment and present the R&D activities ongoing.
The low-x gluon density in the proton and, in particular, in nuclei is only very poorly constrained, while a better understanding of the low-x structure is crucial for measurements at the LHC and also for the planning of experiments at future hadron
One of the key results of the LHC Run 1 was the observation of an enhanced production of strange particles in high multiplicity pp and p--Pb collisions at $sqrt{s_mathrm{NN}}$ = 7 and 5.02 TeV, respectively. The strangeness enhancement is investigate
The ALICE experiment at the Large Hadron Collider (LHC) at CERN consists of a central barrel, a muon spectrometer and additional detectors for trigger and event classification purposes. The low transverse momentum threshold of the central barrel give
The differential cross section for the production of direct photons in p+p collisions at sqrt(s)=200 GeV at midrapidity was measured in the PHENIX detector at the Relativistic Heavy Ion Collider. Inclusive-direct photons were measured in the transver
Recent results for high multiplicity pp and p-Pb collisions have revealed that they exhibit heavy-ion-like behaviors. To understand the origin(s) of these unexpected phenomena, event shape observables such as transverse spherocity ($S_{rm 0}^{p_{rm T