ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological studies of light-flavor hadron production in pp, p-Pb, and Pb-Pb collisions with ALICE at the LHC

115   0   0.0 ( 0 )
 نشر من قبل Sushanta Tripathy
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English
 تأليف Sushanta Tripathy




اسأل ChatGPT حول البحث

Recent results for high multiplicity pp and p-Pb collisions have revealed that they exhibit heavy-ion-like behaviors. To understand the origin(s) of these unexpected phenomena, event shape observables such as transverse spherocity ($S_{rm 0}^{p_{rm T} = 1}$) and the relative transverse activity classifier ($R_{rm{T}}$) can be exploited as a powerful tools to disentangle soft (non-perturbative) and hard (perturbative) particle production. Here, the production of light-flavor hadrons is shown for various $S_{rm 0}^{p_{rm T} = 1}$ classes in pp collisions at $sqrt{s}$ = 13 $textrm{TeV}$ measured with the ALICE detector at the LHC are presented. The evolution of average transverse momentum ($langle p_{rm T}rangle$) with charged-particle multiplicity, and identified particle ratios as a function of $p_{rm T}$ for different $S_{rm 0}^{p_{rm T} = 1}$ are also presented. In addition, the system size dependence of charged-particle production in pp, p-Pb, and Pb-Pb collisions at $sqrt{s_{rm NN}}$ = 5.02 TeV is presented. The evolution of $langle p_{rm T}rangle$ in different topological regions as a function of $R_{rm{T}}$ are presented. Finally, using the same approach, we present a search for jet quenching behavior in small collision systems.


قيم البحث

اقرأ أيضاً

116 - Sushanta Tripathy 2020
Recent measurements in high-multiplicity pp and p-A collisions have revealed that these small collision systems exhibit collective-like behaviour, formerly thought to be achievable only in heavy-ion collisions. To understand the origins of these unex pected phenomena, event shape observables can be exploited, as they serve as a powerful tool to disentangle soft and hard contributions to particle production. Here, results on the production of light flavor hadrons for different classes of unweighted transverse spherocity ($S_{rm 0}^{p_{rm T}= 1}$) and relative transverse activity ($R_{rm{T}}$) in high multiplicity pp collisions at $sqrt{s}$ = 13 $textrm{TeV}$ measured with the ALICE detector are presented. Hadron-to-pion ratios in different $S_{rm 0}^{p_{rm T}= 1}$ and $R_{rm{T}}$ classes are also presented and compared with state-of-the-art QCD-inspired Monte Carlo event generators. The evolution of charged particle average transverse momentum ($langle p_{rm T}rangle$) with multiplicity and $S_{rm 0}^{p_{rm T}= 1}$ is also discussed. In addition, the system size dependence of charged particle production in pp, p-Pb, and Pb-Pb collisions at $sqrt{s_{rm NN}}$= 5.02 TeV is presented. Finally, within the same approach, we present a search for jet quenching behavior in small collision systems.
92 - Ajay Kumar Dash 2018
One of the key results of the LHC Run 1 was the observation of an enhanced production of strange particles in high multiplicity pp and p--Pb collisions at $sqrt{s_mathrm{NN}}$ = 7 and 5.02 TeV, respectively. The strangeness enhancement is investigate d by measuring the evolution with multiplicity of single-strange and multi-strange baryon production relative to non-strange particles. A smooth increase of strange particle yields relative to the non-strange ones with event multiplicity has been observed in such systems. We report the latest results on multiplicity dependence of strange and multi-strange hadron production in pp collisions at $sqrt{s} = $ 13 TeV with ALICE. We also presented recent measurements of mesonic and baryonic resonances in small collision systems like pp and p--Pb at $sqrt{s_mathrm{NN}}$ = 13 and 8.16 TeV, respectively. The system size dependent studies in pp and p-Pb collisions have been used to investigate how the hadronic scattering processes affect measured resonance yields and to better understand the interplay between canonical suppression and strangeness enhancement. The measurement of the $phi(1020)$ meson as a function of multiplicity provides crucial constraints in this context.
72 - L. Massacrier 2019
The photoproduction of heavy vector mesons in the electromagnetic interactions of ultra-relativistic nuclei is sensitive to the gluon distribution in the nucleus and thus to cold nuclear matter effects like shadowing or parton saturation. Besides the well known observations of vector meson production in ultra-peripheral collisions, first observations of an excess over the expected hadronic J/$psi$ production at very low transverse momentum ($p_T < $~0.3 GeV/$c$) in peripheral and semi-central nucleus-nucleus collisions both at LHC and RHIC energies were interpreted as the first sign of coherent J/$psi$ photoproduction occurring in Pb-Pb collisions with nuclear overlap. The ALICE Collaboration published the J/$psi$ coherent photoproduction cross sections in peripheral and semi-central Pb-Pb collisions at $sqrt{s_{rm NN}}$ = 2.76~TeV and forward rapidity ($2.5<y<4.0$). Using the LHC Run-2 data, ALICE presents preliminary results in peripheral Pb-Pb collisions at $sqrt{s_{rm NN}}$ = 5.02 TeV at mid-rapidity ($|y|<0.9$) and forward rapidity. Thanks to the very good tracking resolution of the central barrel, the extraction of the $p_T$-differential cross section was also possible, strengthening the photoproduction origin of the observed J/$psi$ excess. The quantitative understanding of this low-$p_T$ excess poses significant theoretical challenges since the J/$psi$ photoproduction depends on the collision dynamics as well as on the photon-flux and the photonuclear cross section. In this proceeding, we present the latest ALICE measurements on J/$psi$ photoproduction cross section in peripheral Pb-Pb collisions, with emphasis on the new forward measurement in the dimuon decay channel at $sqrt{s_{rm NN}}$ = 5.02~TeV. These results will be discussed and compared to several model calculations of J/$psi$ photoproduction in Pb-Pb collisions with nuclear overlap.
96 - Andrea Dainese 2011
We present the first results from the ALICE experiment on the nuclear modification factors for heavy-flavour hadron production in Pb-Pb collisions at sqrt{s_NN}=2.76 TeV. Using proton-proton and lead-lead collision samples at sqrt{s}=7 TeV and sqrt{s _NN}=2.76 TeV, respectively, nuclear modification factors R_AA(pt) were measured for D mesons at central rapidity (via displaced decay vertex reconstruction), and for electrons and muons, at central and forward rapidity, respectively.
Azimuthal particle correlations have been extensively studied in the past at various collider energies in p-p, p-A, and A-A collisions. Hadron-correlation measurements in heavy-ion collisions have mainly focused on studies of collective (flow) effect s at low-$p_T$ and parton energy loss via jet quenching in the high-$p_T$ regime. This was usually done without event-by-event particle identification. In this paper, we present two-particle correlations with identified trigger hadrons and identified associated hadrons at mid-rapidity in Monte Carlo generated events. The primary purpose of this study was to investigate the effect of quantum number conservation and the flavour balance during parton fragmentation and hadronization. The simulated p-p events were generated with PYTHIA 6.4 with the Perugia-0 tune at $sqrt{s}=7$ TeV. HIJING was used to generate $0-10%$ central Pb-Pb events at $sqrt{s_{rm NN}}=2.76$ TeV. We found that the extracted identified associated hadron spectra for charged pion, kaon, and proton show identified trigger-hadron dependent splitting. Moreover, the identified trigger-hadron dependent correlation functions vary in different $p_T$ bins, which may show the presence of collective/nuclear effects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا