ﻻ يوجد ملخص باللغة العربية
We consider a two-way half-duplex relaying system where multiple pairs of single antenna users exchange information assisted by a multi-antenna relay. Taking into account the practical constraint of imperfect channel estimation, we study the achievable sum spectral efficiency of the amplify-and-forward (AF) and decode-and-forward (DF) protocols, assuming that the relay employs simple maximum ratio processing. We derive an exact closed-form expression for the sum spectral efficiency of the AF protocol and a large-scale approximation for the sum spectral efficiency of the DF protocol when the number of relay antennas, $M$, becomes sufficiently large. In addition, we study how the transmit power scales with $M$ to maintain a desired quality-of-service. In particular, our results show that by using a large number of relay antennas, the transmit powers of the user, relay, and pilot symbol can be scaled down proportionally to $1/M^alpha$, $1/M^beta$, and $1/M^gamma$ for certain $alpha$, $beta$, and $gamma$, respectively. This elegant power scaling law reveals a fundamental tradeoff between the transmit powers of the user/relay and pilot symbol. Finally, capitalizing on the new expressions for the sum spectral efficiency, novel power allocation schemes are designed to further improve the sum spectral efficiency.
This paper considers a multipair amplify-and-forward massive MIMO relaying system with one-bit ADCs and one-bit DACs at the relay. The channel state information is estimated via pilot training, and then utilized by the relay to perform simple maximum
The hybrid half-duplex/full-duplex (HD/FD) relaying scheme is an effective paradigm to overcome the negative effects of the self-interference incurred by the full-duplex (FD) mode. However, traditional hybrid HD/FD scheme does not consider the divers
In this paper, the design of robust linear precoders for the massive multi-input multi-output (MIMO) downlink with imperfect channel state information (CSI) is investigated. The imperfect CSI for each UE obtained at the BS is modeled as statistical C
This paper considers a multipair amplify-and-forward massive MIMO relaying system with low-resolution ADCs at both the relay and destinations. The channel state information (CSI) at the relay is obtained via pilot training, which is then utilized to
With the help of an in-band full-duplex relay station, it is possible to simultaneously transmit and receive signals from multiple users. The performance of such system can be greatly increased when the relay station is equipped with a large number o