ﻻ يوجد ملخص باللغة العربية
We present a systematic study of the temperature dependence of diffusive magnon spin transport, using a non-local device geometry. In our measurements, we detect spin signals arising from electrical and thermal magnon generation, and we directly extract the magnon spin diffusion length $lambda_m$ for temperatures from 2 to 293 K. Values of $lambda_m$ obtained from electrical and thermal generation agree within the experimental error, with $lambda_m=9.6pm0.9$ $mu$m at room temperature to a minimum of $lambda_m=5.5pm0.7$ $mu$m at 30 K. Using a 2D finite element model to fit the data obtained for electrical magnon generation we extract the magnon spin conductivity $sigma_m$ as a function of temperature, which is reduced from $sigma_m=5.1pm0.2times10^5$ S/m at room temperature to $sigma_m=0.7pm0.4times10^5$ S/m at 5 K. Finally, we observe an enhancement of the signal originating from thermally generated magnons for low temperatures, where a maximum is observed around $T=7$ K. An explanation for this low temperature enhancement is however still missing and requires additional investigations.
We investigated the effect of an external magnetic field on the diffusive spin transport by magnons in the magnetic insulator yttrium iron garnet (YIG), using a non-local magnon transport measurement geometry. We observed a decrease in magnon spin di
The spin Seebeck effect (SSE) is observed in magnetic insulator|heavy metal bilayers as an inverse spin Hall effect voltage under a temperature gradient. The SSE can be detected nonlocally as well, viz. in terms of the voltage in a second metallic co
In spintronics the propagation of spin-wave excitations in magnetically ordered materials can also be used to transport and process information. One of the most popular materials in this regard is the ferrimagnetic insulator yttrium-iron-garnet due i
Nano resonators in which mechanical vibrations and spin waves can be coupled are an intriguing concept that can be used in quantum information processing to transfer information between different states of excitation. Until now, the fabrication of fr
Spin-phonon interaction is an important channel for spin and energy relaxation in magnetic insulators. Understanding this interaction is critical for developing magnetic insulator-based spintronic devices. Quantifying this interaction in yttrium iron