ترغب بنشر مسار تعليمي؟ اضغط هنا

Identification of a possible superconducting transition above room temperature in natural graphite crystals

333   0   0.0 ( 0 )
 نشر من قبل Pablo D. Esquinazi
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Measuring with high precision the electrical resistance of highly ordered natural graphite samples from a Brazil mine, we have identified a transition at $sim$350~K with $sim$40~K transition width. The step-like change in temperature of the resistance, its magnetic irreversibility and time dependence after a field change, consistent with trapped flux and flux creep, and the partial magnetic flux expulsion obtained by magnetization measurements, suggest the existence of granular superconductivity below 350~K. The zero-field virgin state can only be reached again after zero field cooling the sample from above the transition. Paradoxically, the extraordinarily high transition temperature we found for this and several other graphite samples is the reason why this transition remained undetected so far. The existence of well ordered rhombohedral graphite phase in all measured samples has been proved by x-rays diffraction measurements, suggesting its interfaces with the Bernal phase as a possible origin for the high-temperature superconductivity, as theoretical studies predicted. The localization of granular superconductivity at these two dimensional interfaces prevents the observation of a zero resistance state or of a full Meissner state.



قيم البحث

اقرأ أيضاً

137 - M. S. Grbic , M. Pozek , D. Paar 2010
Microwave absorption measurements in magnetic fields from zero up to 16 T were used to determine the temperature range of superconducting fluctuations above the superconducting critical temperature T_c in YBa_2Cu_3O_{7-delta}. Measurements were perfo rmed on deeply underdoped, slightly underdoped, and overdoped single crystals. The temperature range of the superconducting fluctuations above T_c is determined by an experimental method which is free from arbitrary assumptions about subtracting the nonsuperconducting contributions to the total measured signal, and/or theoretical models to extract the unknown parameters. The superconducting fluctuations are detected in the ab-plane, and c-axis conductivity, by identifying the onset temperature T. Within the sensitivity of the method, this fluctuation regime is found only within a fairly narrow region above T_c. Its width increases from 7 K in the overdoped sample (T_c = 89 K), to at most 23 K in the deeply underdoped sample (T_c = 57 K), so that T falls well below the pseudogap temperature T*. Implications of these findings are discussed in the context of other experimental probes of superconducting fluctuations in the cuprates.
Raman studies on Ca4Al2O5.7Fe2As2 superconductor in the temperature range of 5 K to 300 K, covering the superconducting transition temperature Tc ~ 28.3 K, reveal that the Raman mode at ~ 230 cm-1 shows a sharp jump in frequency by ~ 2 % and linewidt h increases by ~ 175 % at To ~ 60 K. Below To, anomalous softening of the mode frequency and a large decrease by ~ 10 cm-1 in the linewidth is observed. These precursor effects at T0 (~ 2Tc) are attributed to significant superconducting fluctuations, possibly enhanced due to reduced dimensionality arising from weaked coupling between the well separated (~ 15 {AA}) Fe-As layers in the unit cell. A large blue-shift of the mode frequency between 300 K to 60 K (~7%) indicates strong spin-phonon coupling in this superconductor.
In the last 43 years several hints were reported suggesting the existence of granular superconductivity above room temperature in different graphite-based systems. In this paper some of the results are reviewed, giving special attention to those obta ined in water and n-heptane treated graphite powders, commercial and natural bulk graphite samples with different characteristics as well as transmission electron microscope (TEM) lamellae. The overall results indicate that superconducting regions exist and are localized at certain internal interfaces of the graphite structure. The existence of the rhombohedral graphite phase in all samples with superconducting-like properties suggests its interfaces with the Bernal phase as a possible origin for the high-temperature superconductivity, as theoretical calculations predict. High precision electrical resistance and magnetization measurements were used to identify a transition at $T_c gtrsim 350~$K. To check for the existence of true zero resistance paths in the samples we used local magnetic measurements, which results support the existence of superconducting regions at such high temperatures.
Nanoparticles of superconducting YBa2Cu3O7-delta (YBCO) (Tc = 91 K) exhibit ferromagnetism at room temperature while the bulk YBCO, obtained by heating the nanoparticles at high temperature (940 degree C), shows a linear magnetization curve. Across t he superconducting transition temperature, the magnetization curve changes from that of a soft ferromagnet to a superconductor. Furthermore, our experiments reveal that not only nanoparticles of metal oxides but also metal nitrides such as NbN (Tc = 6 - 12 K) and delta-MoN (Tc ~ 6 K) exhibit room-temperature ferromagnetism.
We express the superconducting gap, $Delta(T)$, in terms of thermodynamic functions in both $s$- and d-wave symmetries. Applying to Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ and Y$_{0.8}$Ca$_{0.2}$Ba$_2$Cu$_3$O$_{7-delta}$ we find that for all dopings $Delta (T)$ persists, as a partial gap, high above $T_c$ due to strong superconducting fluctuations. Therefore in general two gaps are present above $T_c$, the superconducting gap and the pseudogap, effectively reconciling two highly polarized views concerning pseudogap physics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا