ترغب بنشر مسار تعليمي؟ اضغط هنا

Work function of bulk-insulating topological insulator Bi2-xSbxTe3-ySey

298   0   0.0 ( 0 )
 نشر من قبل Seigo Souma
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent discovery of bulk insulating topological insulator (TI) Bi2-xSbxTe3-ySey paved a pathway toward practical device application of TIs. For realizing TI-based devices, it is necessary to contact TIs with a metal. Since the band-bending at the interface dominates the character of devices, knowledge of TIs work function is of essential importance. We have determined the compositional dependence of work function in Bi2-xSbxTe3-ySey by high-resolution photoemission spectroscopy. The obtained work-function values (4.95-5.20 eV) show a systematic variation with the composition, well tracking the energy shift of the surface chemical potential seen by angle-resolved photoemission spectroscopy. The present result serves as a useful guide for developing TI-based electronic devices.

قيم البحث

اقرأ أيضاً

As personal electronic devices increasingly rely on cloud computing for energy-intensive calculations, the power consumption associated with the information revolution is rapidly becoming an important environmental issue. Several approaches have been proposed to construct electronic devices with low energy consumption. Among these, the low-dissipation surface states of topological insulators (TIs) are widely employed. To develop TI-based devices, a key factor is the maximum temperature at which the Dirac surface states dominate the transport behavior. Here, we employ Shubnikov-de Haas oscillations (SdH) as a means to study the surface state survival temperature in a high quality vanadium doped Bi1.08Sn0.02Sb0.9Te2S single crystal system. The temperature and angle dependence of the SdH show that: 1) crystals with different vanadium (V) doping levels are insulating in the 3-300 K region, 2) the SdH oscillations show two-dimensional behavior, indicating that the oscillations arise from the pure surface states; and 3) at 50 K, the V0.04 single crystals (Vx:Bi1.08-xSn0.02Sb0.9Te2S, where x = 0.04) still show clear sign of SdH oscillations, which demonstrate that the surface dominant transport behavior can survive above 50 K. The robust surface states in our V doped single crystal systems provide an ideal platform to study the Dirac fermions and their interaction with other materials above 50 K.
One-dimensional Majorana modes are predicated to form in Josephson junctions based on three-dimensional topological insulators (TIs). While observations of supercurrents in Josephson junctions made on bulk-insulating TI samples are recently reported, the Fraunhofer patters observed in such TI-based Josephson junctions, which sometimes present anomalous features, are still not well understood. Here we report our study of highly gate-tunable TI-based Josephson junctions made of one of the most bulk-insulating TI materials, BiSbTeSe2, and Al. The Fermi level can be tuned by gating across the Dirac point, and the high transparency of the Al/BiSbTeSe2 interface is evinced by a high characteristic voltage and multiple Andreev reflections with peak indices reaching 12. Anomalous Fraunhofer patterns with missing lobes were observed in the entire range of gate voltage. We found that, by employing an advanced fitting procedure to use the maximum entropy method in a Monte Carlo algorithm, the anomalous Fraunhofer patterns are explained as a result of inhomogeneous supercurrent distributions on the TI surface in the junction. Besides establishing a highly promising fabrication technology, this work clarifies one of the important open issues regarding TI-based Josephson junctions.
Nuclear magnetic resonance (NMR) and transport measurements have been performed at high magnetic fields and low temperatures in a series of $n$-type Bi$_{2}$Se$_{3}$ crystals. In low density samples, a complete spin polarization of the electronic sys tem is achieved, as observed from the saturation of the isotropic component of the $^{209}$Bi NMR shift above a certain magnetic field. The corresponding spin splitting, defined in the phenomenological approach of a 3D electron gas with a large (spin-orbit-induced) effective $g$-factor, scales as expected with the Fermi energy independently determined by simultaneous transport measurements. Both the effective electronic $g$-factor and the contact hyperfine coupling constant are precisely determined. The magnitude of this latter reveals a non negligible $s$-character of the electronic wave function at the bottom of the conduction band. Our results show that the bulk electronic spin polarization can be directly probed via NMR and pave the way for future NMR investigations of the electronic states in Bi-based topological insulators.
Topological surface states have been extensively observed via optics in thin films of topological insulators. However, in typical thick single crystals of these materials, bulk states are dominant and it is difficult for optics to verify the existenc e of topological surface states definitively. In this work, we studied the charge dynamics of the newly formulated bulk-insulating Sn-doped Bi$_{1.1}$Sb$_{0.9}$Te$_2$S crystal by using time-domain terahertz spectroscopy. This compound shows much better insulating behavior than any other bulk-insulating topological insulators reported previously. The transmission can be enhanced an amount which is 5$%$ of the zero-field transmission by applying magnetic field to 7 T, an effect which we believe is due to the suppression of topological surface states. This suppression is essentially independent of the thicknesses of the samples, showing the two-dimensional nature of the transport. The suppression of surface states in field allows us to use the crystal slab itself as a reference sample to extract the surface conductance, mobility, charge density and scattering rate. Our measurements set the stage for the investigation of phenomena out of the semi-classical regime, such as the topological magneto-electric effect.
We provide evidence that, alongside topologically protected edge states, two-dimensional Chern insulators also support localised bulk states deep in their valance and conduction bands. These states manifest when local potential gradients are applied to the bulk, while all parts of the system remain adiabatically connected to the same phase. In turn, the bulk states produce bulk current transverse to the strain. This occurs even when the potential is always below the energy gap, where one expects only edge currents to appear. Bulk currents are topologically protected and behave like edge currents under external influence, such as temperature or local disorder. Detecting topologically resilient bulk currents offers a direct means to probe the localised bulk states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا