ترغب بنشر مسار تعليمي؟ اضغط هنا

Prediction and near-field observation of skull-guided acoustic waves

69   0   0.0 ( 0 )
 نشر من قبل H\\'ector Estrada-Beltr\\'an
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ultrasound waves propagating in water or soft biological tissue are strongly reflected when encountering the skull, which limits the use of ultrasound-based techniques in transcranial imaging and therapeutic applications. Current knowledge on the acoustic properties of the cranial bone is restricted to far-field observations, leaving its near-field properties unexplored. We report on the existence of skull-guided acoustic waves, which was herein confirmed by near-field measurements of optoacoustically-induced responses in ex-vivo murine skulls immersed in water. Dispersion of the guided waves was found to reasonably agree with the prediction of a multilayered flat plate model. It is generally anticipated that our findings may facilitate and broaden the application of ultrasound-mediated techniques in brain diagnostics and therapy.



قيم البحث

اقرأ أيضاً

Traumatic brain injury [TBI] has become a signature injury of current military conflicts, with debilitating, costly, and long-lasting effects. Although mechanisms by which head impacts cause TBI have been well-researched, the mechanisms by which blas ts cause TBI are not understood. From numerical hydrodynamic simulations, we have discovered that non-lethal blasts can induce sufficient skull flexure to generate potentially damaging loads in the brain, even without a head impact. The possibility that this mechanism may contribute to TBI has implications for injury diagnosis and armor design.
Transition radiation from relativistic electrons is investigated in an ultrasonic superlattice excited in a finite thickness plate. In the quasi-classical approximation formulae are derived for the vector potential of the electromagnetic field and fo r the spectral-angular distribution of the radiation intensity. The acoustic waves generate new resonance peaks in the spectral and angular distribution of the radiation intensity. The heights of the peaks can be tuned by choosing the parameters of the acoustic wave.
Far-field directional scattering and near-field directional coupling from simple sources have recently received great attention in photonics: beyond circularly-polarized dipoles, whose directional coupling to evanescent waves was recently applied to acoustics, the near-field directionality of modes in optics includes phased combinations of electric and magnetic dipoles, such as the Janus dipole and the Huygens dipole, both of which have been experimentally implemented using high refractive index nanoparticles. In this work we extend this to acoustics: we propose the use of high acoustic index scatterers exhibiting phased combinations of acoustic monopoles and dipoles with far-field and near-field directionality. All solutions stem from the elegant acoustic angular spectrum of the acoustic source, in close analogy to electromagnetism. A Huygens acoustic source with zero backward scattering is proposed and numerically demonstrated, as well as a Janus source achieving face-selective and position-dependent evanescent coupling to nearby acoustic waveguides.
409 - Alexander Hunold 2018
Physical head phantoms allow assessing source reconstruction procedures in electroencephalography and electrical stimulation profiles during transcranial electric stimulation. Volume conduction in the head is strongly influenced by the skull represen ting the main conductivity barrier. Realistic modeling of its characteristics is thus important for phantom development. In the present study, we proposed plastic clay as a material for modeling the skull in phantoms. We analyzed five clay types varying in granularity and fractions of fireclay, each with firing temperatures from 550 {deg}C to 950 {deg}C. We investigated the conductivity of standardized clay samples when immersed in a 0.9% sodium chloride solution with time-resolved four-point impedance measurements. To test the reusability of the clay model, these measurements were repeated after cleaning the samples by rinsing in deionized water for 5 h. We found time-dependent impedance changes for approximately 5 min after immersion in the solution. Thereafter, the conductivities stabilized between 0.0716 S/m and 0.0224 S/m depending on clay type and firing temperatures. The reproducibility of the measurement results proved the effectiveness of the rinsing procedure. Clay provides formability, is permeable for ions, can be adjusted in conductivity value and is thus suitable for the skull modeling in phantoms.
Forward transition radiation is considered in an ultrasonic superlattice excited in a finite thickness plate under oblique incidence of relativistic electrons. We investigate the influence of acoustic waves on both the intensity and polarization of t he radiation. In the quasi-classical approximation, formulas are derived for the vector potential of the electromagnetic field and for the spectral-angular distribution of the radiation intensity. It is shown that the acoustic waves generate new resonance peaks in the spectral and angular distributions. The heights and the location of the peaks can be controlled by choosing the parameters of the acoustic wave. The numerical examples are given for a plate of fused quartz.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا