ﻻ يوجد ملخص باللغة العربية
The complex magnetism and transport properties of tetragonal Ce$_3$Cu$_4$As$_4$O$_2$ were examined through neutron scattering and physical properties measurements on polycrystalline samples. The lamellar structure consists of alternating layers of $rm CeCu_4As_4$ with a single square Ce lattice and oxygen-linked Ce bi-layer $rm Ce_2O_2$. Extending along $bf c$, a tube-like Fermi surface from DFT calculations points to a quasi-two-dimensional electronic system. Peaks in the specific heat at the Ne{e}l temperature $T_{N}=24$ $rm K$, $T_{2}~=~16 $ $rm K$ and $T_{3}~=~1.9$ $ rm K$ indicate three magnetic phase transitions or distinct cross-over phenomena. For $T<T_{N}$ neutron diffraction indicates the development of ferromagnetic ab sheets for both Ce sites, with alternating polarization along $bf{c}$, a wave vector ${bf k}_{1}={bf c}^*$. For $T<T_{2}$, quasi-two-dimensional low-energy spin fluctuations with ${bf k}_{2}=frac{1}{2}{bf a}^*$ and polarized perpendicular to ${bf k}_{2}$ are suppressed. The data are consistent with quasi-two-dimensional antiferromagnetic order in the $rm CeCu_4As_4$ planes polarized along the ${bf k}_{2}$ wave vector. $T_{3}$ marks a spin-flop transition where the ${bf k}_{1}$ staggered magnetization switches to in-plane polarization. While the narrow 4f bands lie deep below the Fermi surface, there are significant transport anomalies associated with the transitions; in particular a substantial reduction in resistivity for $T<T_{N}$. At $T=100$ $ rm mK$ the ${bf k}_1$ modulated staggered moment is $0.85~mu_B$, which matches the $0.8~mu_B$ saturation magnetization achieved for H $~=~7$ $ rm T$ at $T~=~2$ $ rm K$. From low T Lorentzian fits the correlation length is in excess of 75 AA. We argue the unusual sequence of magnetic transitions results from competing interactions and anisotropies for the two Ce sites.
The temperature dependence of the hexagonal lattice parameter $c$ of single crystal $rm LaCoO_3$ (LCO) with $H=0$ and $800$Oe, as well as LCO bulk powders with $H=0$, was measured using high-resolution x-ray scattering near the transition temperature
With octahedrally coordinated $t_{rm 2g}$ orbitals which are active at filling $n=2$, the $rm Sr_2CrO_4$ compound exhibits rich interplay of spin-orbital physics with tetragonal distortion induced crystal field tuning by external agent such as pressu
Iridate oxides display exotic physical properties that arise from the interplay between a large spin-orbit coupling and electron correlations. Here, we present a comprehensive study of the effects of hydrostatic pressure on the electronic transport p
In magnetic Weyl semimetals, where magnetism breaks time-reversal symmetry, large magnetically sensitive anomalous transport responses are anticipated that could be useful for topological spintronics. The identification of new magnetic Weyl semimetal
Motivated by the search for design principles of rare-earth-free strong magnets, we present a study of electronic structure and magnetic properties of the ferromagnetic metal Fe3GeTe2 within local density approximation (LDA) of the density functional