ترغب بنشر مسار تعليمي؟ اضغط هنا

Creation of two-photon states via interactions between Rydberg atoms during light storage

76   0   0.0 ( 0 )
 نشر من قبل Julius Ruseckas
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a new method to create two-photon states in a controllable way using interaction between the Rydberg atoms during the storage and retrieval of slow light. A distinctive feature of the suggested procedure is that the slow light is stored into a superposition of two atomic coherences under conditions of electromagnetically induced transparency (EIT). Interaction between the atoms during the storage period creates entangled pairs of atoms in a superposition state that is orthogonal to the initially stored state. Restoring the slow light from this new atomic state one can produce a two photon state with a second-order correlation function determined by the atom-atom interaction and the storage time. Therefore the measurement of the restored light allows one to probe the atom-atom coupling by optical means with a sensitivity that can be increased by extending the storage time. As a realization of this idea we consider a many-body Ramsey-type technique which involves pi/2 pulses creating a superposition of Rydberg states at the beginning and the end of the storage period. In that case the regenerated light is due to the resonance dipole-dipole interaction between the atoms in the Rydberg states.



قيم البحث

اقرأ أيضاً

We theoretically analyze the interactions and decay rates for atoms dressed by multiple laser fields to strongly interacting Rydberg states using a quantum master equation approach. In this framework a comparison of two-level and three-level Rydberg- dressing schemes is presented. We identify a resonant enhancement of the three-level dressed interaction strength which originates from cooperative multiphoton couplings as well as small distance dependent decay rates. In this regime the soft-core shape of the potential is independent of the sign of the bare Rydberg-Rydberg interaction, while its sign can be repulsive or attractive depending on the intermediate state detuning. As a consequence, near-resonant Rydberg dressing in three-level atomic systems may enable the realization of laser driven quantum fluids with long-range and anisotropic interactions and with controllable dissipation.
We show that indirect spin-spin interactions between effective spin-1/2 systems can be realized in two parallel 1D optical lattices loaded with polar molecules and/or Rydberg atoms. The effective spin can be encoded into low-energy rotational states of polar molecules or long-lived states of Rydberg atoms, tightly trapped in a deep optical lattice. The spin-spin interactions can be mediated by Rydberg atoms, placed in a parallel shallow optical lattice, interacting with the effective spins by charge-dipole (for polar molecules) or dipole-dipole (for Rydberg atoms) interaction. Indirect XX, Ising and XXZ interactions with interaction coefficients $J^{bot}$ and $J^{zz}$ sign varying with interspin distance can be realized, in particular, the $J_{1}-J_{2}$ XXZ model with frustrated ferro-(antiferro-)magnetic nearest (next-nearest) neighbor interactions.
The atom-based traceable standard for microwave electrometry shows promising advantages by enabling stable and uniform measurement. Here we theoretically propose and then experimentally realize an alternative direct International System of Units (SI) -traceable and self-calibrated method for measuring a microwave electric field strength based on electromagnetically induced absorption (EIA) in cold Rydberg atoms. Comparing with the method of electromagnetically induced transparency, we show that the equivalence relation between microwave Rabi frequency and Autler-Townes splitting is more valid and is even more robust against the experimental parameters in the EIAs linear region. Furthermore, a narrower linewidth of cold Rydberg EIA enables us to realize a direct SI-traceable microwave-electric-field measurement as small as $sim$100 $mumathrm{!V} mathrm{cm}^{!-!1}$.
We report on the local control of the transition frequency of a spin-$1/2$ encoded in two Rydberg levels of an individual atom by applying a state-selective light shift using an addressing beam. With this tool, we first study the spectrum of an eleme ntary system of two spins, tuning it from a non-resonant to a resonant regime, where bright (superradiant) and dark (subradiant) states emerge. We observe the collective enhancement of the microwave coupling to the bright state. We then show that after preparing an initial single spin excitation and letting it hop due to the spin-exchange interaction, we can freeze the dynamics at will with the addressing laser, while preserving the coherence of the system. In the context of quantum simulation, this scheme opens exciting prospects for engineering inhomogeneous XY spin Hamiltonians or preparing spin-imbalanced initial states.
We report spectroscopic observation of Rydberg polarons in an atomic Bose gas. Polarons are created by excitation of Rydberg atoms as impurities in a strontium Bose-Einstein condensate. They are distinguished from previously studied polarons by macro scopic occupation of bound molecular states that arise from scattering of the weakly bound Rydberg electron from ground-state atoms. The absence of a $p$-wave resonance in the low-energy electron-atom scattering in Sr introduces a universal behavior in the Rydberg spectral lineshape and in scaling of the spectral width (narrowing) with the Rydberg principal quantum number, $n$. Spectral features are described with a functional determinant approach (FDA) that solves an extended Fr{o}hlich Hamiltonian for a mobile impurity in a Bose gas. Excited states of polyatomic Rydberg molecules (trimers, tetrameters, and pentamers) are experimentally resolved and accurately reproduced with FDA.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا