ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-body interactions and decay of three-level Rydberg-dressed atoms

213   0   0.0 ( 0 )
 نشر من قبل Stephan Helmrich
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We theoretically analyze the interactions and decay rates for atoms dressed by multiple laser fields to strongly interacting Rydberg states using a quantum master equation approach. In this framework a comparison of two-level and three-level Rydberg-dressing schemes is presented. We identify a resonant enhancement of the three-level dressed interaction strength which originates from cooperative multiphoton couplings as well as small distance dependent decay rates. In this regime the soft-core shape of the potential is independent of the sign of the bare Rydberg-Rydberg interaction, while its sign can be repulsive or attractive depending on the intermediate state detuning. As a consequence, near-resonant Rydberg dressing in three-level atomic systems may enable the realization of laser driven quantum fluids with long-range and anisotropic interactions and with controllable dissipation.



قيم البحث

اقرأ أيضاً

We present combined measurements of the spatially-resolved optical spectrum and the total excited-atom number in an ultracold gas of three-level atoms under electromagnetically induced transparency conditions involving high-lying Rydberg states. The observed optical transmission of a weak probe laser at the center of the coupling region exhibits a double peaked spectrum as a function of detuning, whilst the Rydberg atom number shows a comparatively narrow single resonance. By imaging the transmitted light onto a charge-coupled-device camera, we record hundreds of spectra in parallel, which are used to map out the spatial profile of Rabi frequencies of the coupling laser. Using all the information available we can reconstruct the full one-body density matrix of the three-level system, which provides the optical susceptibility and the Rydberg density as a function of spatial position. These results help elucidate the connection between three-level interference phenomena, including the interplay of matter and light degrees of freedom and will facilitate new studies of many-body effects in optically driven Rydberg gases.
We demonstrate three-dimensional trapping of individual Rydberg atoms in holographic optical bottle beam traps. Starting with cold, ground-state $^{87}$Rb atoms held in standard optical tweezers, we excite them to $nS_{1/2}$, $nP_{1/2}$, or $nD_{3/2} $ Rydberg states and transfer them to a hollow trap at 850 nm. For principal quantum numbers $60 leqslant n leqslant 90$, the measured trapping time coincides with the Rydberg state lifetime in a 300~K environment. We show that these traps are compatible with quantum information and simulation tasks by performing single qubit microwave Rabi flopping, as well as by measuring the interaction-induced, coherent spin-exchange dynamics between two trapped Rydberg atoms separated by 40 $mu$m. These results will find applications in the realization of high-fidelity quantum simulations and quantum logic operations with Rydberg atoms.
215 - David Wilkowski 2010
Forced evaporative cooling in a far-off-resonance optical dipole trap is proved to be an efficient method to produce fermionic- or bosonic-degenerated gases. However in most of the experiences, the reduction of the potential height occurs with a dimi nution of the collision elastic rate. Taking advantage of a long-living excited state, like in two-electron atoms, I propose a new scheme, based on an optical knife, where the forced evaporation can be driven independently of the trap confinement. In this context, the runaway regime might be achieved leading to a substantial improvement of the cooling efficiency. The comparison with the different methods for forced evaporation is discussed in the presence or not of three-body recombination losses.
The multichannel Na-Cs interactions are characterized by a series of measurements using two atoms in an optical tweezer, along with a multichannel quantum defect theory (MQDT). The triplet and singlet scattering lengths are measured by performing Ram an spectroscopy of the Na-Cs motional states and least-bound molecular state in the tweezer. Magnetic Feshbach resonances are observed for only two atoms at fields which agree well with the MQDT. Our methodology, which promotes the idea of an effective theory of interaction, can be a key step towards the understanding and the description of more complex interactions. The tweezer-based measurements in particular will be an important tool for atom-molecule and molecule-molecule interactions, where high densities are experimentally challenging and where the interactions can be dominated by intra-species processes.
We propose a new method to create two-photon states in a controllable way using interaction between the Rydberg atoms during the storage and retrieval of slow light. A distinctive feature of the suggested procedure is that the slow light is stored in to a superposition of two atomic coherences under conditions of electromagnetically induced transparency (EIT). Interaction between the atoms during the storage period creates entangled pairs of atoms in a superposition state that is orthogonal to the initially stored state. Restoring the slow light from this new atomic state one can produce a two photon state with a second-order correlation function determined by the atom-atom interaction and the storage time. Therefore the measurement of the restored light allows one to probe the atom-atom coupling by optical means with a sensitivity that can be increased by extending the storage time. As a realization of this idea we consider a many-body Ramsey-type technique which involves pi/2 pulses creating a superposition of Rydberg states at the beginning and the end of the storage period. In that case the regenerated light is due to the resonance dipole-dipole interaction between the atoms in the Rydberg states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا