ﻻ يوجد ملخص باللغة العربية
We put forward an effective amplification protocol for protecting the single-photon multi-mode W state of the time-bin qubit. The protocol only relies on linear optical elements, such as the $50:50$ beam splitters, variable beam splitters with the transmission of $t$ and the polarizing beam splitters. Only one pair of the single-photon multi-mode W state and some auxiliary single photons are required, and the fidelity of the single-photon multi-mode W state can be increased under $t<frac{1}{2}$. The encoded time-bin information can be perfectly contained. Our protocol is quite simple and economical, and it can be realized under current experimental condition. Based on above features, it may be useful in current and future quantum information processing.
Non-deterministic noiseless amplification of a single mode can circumvent the unique challenges to amplifying a quantum signal, such as the no-cloning theorem, and the minimum noise cost for deterministic quantum state amplification. However, existin
Single-photon sources are set to be a fundamental tool for metrological applications as well as for quantum information related technologies. Because of their upcoming widespread dissemination, the need for their characterization and standardization
We experimentally demonstrate a high-efficiency Bell state measurement for time-bin qubits that employs two superconducting nanowire single-photon detectors with short dead-times, allowing projections onto two Bell states, |Psi>- and |Psi+>. Compared
Single-photon sources (SPSs) are mainly characterized by the minimum value of their second-order coherence function, viz. their $g^{(2)}$ function. A precise measurement of $g^{(2)}$ may, however, require high time-resolution devices, in whose absenc
Single photon source represent a fundamental building block for optical implementations of quantum information tasks ranging from basic tests of quantum physics to quantum communication and high-resolution quantum measurement. In this paper we invest