ﻻ يوجد ملخص باللغة العربية
We summarize previous results on the most general Proca theory in 4 dimensions containing only first-order derivatives in the vector field (second-order at most in the associated Stuckelberg scalar) and having only three propagating degrees of freedom with dynamics controlled by second-order equations of motion. Discussing the Hessian condition used in previous works, we conjecture that, as in the scalar galileon case, the most complete action contains only a finite number of terms with second-order derivatives of the Stuckelberg field describing the longitudinal mode, which is in agreement with the results of JCAP 1405, 015 (2014) and Phys. Lett. B 757, 405 (2016) and complements those of JCAP 1602, 004 (2016). We also correct and complete the parity violating sector, obtaining an extra term on top of the arbitrary function of the field $A_mu$, the Faraday tensor $F_{mu u}$ and its Hodge dual $tilde{F}_{mu u}$.
We revisit the most general theory for a massive vector field with derivative self-interactions, extending previous works on the subject to account for terms having trivial total derivative interactions for the longitudinal mode. In the flat spacetim
To date, different alternative theories of gravity, although related, involving Proca fields have been proposed. Unfortunately, the procedure to obtain the relevant terms in some formulations has not been systematic enough or exhaustive, thus resulti
Following previous works on generalized Abelian Proca theory, also called vector Galileon, we investigate the massive extension of an SU(2) gauge theory, i.e., the generalized SU(2) Proca model, which could be dubbed non-Abelian vector Galileon. This
We have investigated if the vector field can give rise to an accelerating phase in the early universe. We consider a timelike vector field with a general quadratic kinetic term in order to preserve an isotropic background spacetime. The vector field
We study the dynamics of a timelike vector field which violates Lorentz invariance when the background spacetime is in an accelerating phase in the early universe. It is shown that a timelike vector field is difficult to realize an inflationary phase