ﻻ يوجد ملخص باللغة العربية
We revisit the most general theory for a massive vector field with derivative self-interactions, extending previous works on the subject to account for terms having trivial total derivative interactions for the longitudinal mode. In the flat spacetime (Minkowski) case, we obtain all the possible terms containing products of up to five first-order derivatives of the vector field, and provide a conjecture about higher-order terms. Rendering the metric dynamical, we covariantize the results and add all possible terms implying curvature.
We summarize previous results on the most general Proca theory in 4 dimensions containing only first-order derivatives in the vector field (second-order at most in the associated Stuckelberg scalar) and having only three propagating degrees of freedo
Following previous works on generalized Abelian Proca theory, also called vector Galileon, we investigate the massive extension of an SU(2) gauge theory, i.e., the generalized SU(2) Proca model, which could be dubbed non-Abelian vector Galileon. This
To date, different alternative theories of gravity, although related, involving Proca fields have been proposed. Unfortunately, the procedure to obtain the relevant terms in some formulations has not been systematic enough or exhaustive, thus resulti
We have investigated if the vector field can give rise to an accelerating phase in the early universe. We consider a timelike vector field with a general quadratic kinetic term in order to preserve an isotropic background spacetime. The vector field
We derive the profile of a vector field coupled to matter on a static and spherically symmetric background in the context of generalized Proca theories. The cubic Galileon self-interaction leads to the suppression of a longitudinal vector component d