ترغب بنشر مسار تعليمي؟ اضغط هنا

The reproducible radio outbursts of SS Cygni

74   0   0.0 ( 0 )
 نشر من قبل Thomas Russell D
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results of our intensive radio observing campaign of the dwarf nova SS Cyg during its 2010 April outburst. We argue that the observed radio emission was produced by synchrotron emission from a transient radio jet. Comparing the radio light curves from previous and subsequent outbursts of this system (including high-resolution observations from outbursts in 2011 and 2012) shows that the typical long and short outbursts of this system exhibit reproducible radio outbursts that do not vary significantly between outbursts, which is consistent with the similarity of the observed optical, ultraviolet and X-ray light curves. Contemporaneous optical and X-ray observations show that the radio emission appears to have been triggered at the same time as the initial X-ray flare, which occurs as disk material first reaches the boundary layer. This raises the possibility that the boundary region may be involved in jet production in accreting white dwarf systems. Our high spatial resolution monitoring shows that the compact jet remained active throughout the outburst with no radio quenching.

قيم البحث

اقرأ أيضاً

198 - V.F. Suleimanov 2012
The Chandra / LETG spectrum of SS Cyg in outburst shows broad (approx 5 A) spectral features that have been interpreted as a large number of absorption lines on a blackbody continuum with a temperature of 250 kK (Mauche 2004). It is most probable tha t this is the spectrum of the fast-rotating optically thick boundary layer on the white dwarf surface. Here we present the results of fitting this spectrum with high gravity hot stellar model atmospheres. An extended set of LTE model atmospheres with solar chemical composition was computed for this purpose. The best fit is obtained with the following parameters: T_eff=190 kK, log g=6.2, and N_H=8 10^{19} cm^{-2}. The spectrum of this model describes the observed spectrum in the 60--125 A range reasonably well, but at shorter wavelengths the observed spectrum has much higher flux. The reasons for this are discussed. The derived low surface gravity supports the hypothesis of the fast rotating boundary layer.
Dwarf novae are white dwarfs accreting matter from a nearby red dwarf companion. Their regular outbursts are explained by a thermal-viscous instability in the accretion disc, described by the disc instability model that has since been successfully ex tended to other accreting systems. However, the prototypical dwarf nova, SS Cygni, presents a major challenge to our understanding of accretion disc theory. At the distance of 159 +/- 12 pc measured by the Hubble Space Telescope, it is too luminous to be undergoing the observed regular outbursts. Using very long baseline interferometric radio observations, we report an accurate, model-independent distance to SS Cygni that places the source significantly closer at 114 +/- 2 pc. This reconciles the source behavior with our understanding of accretion disc theory in accreting compact objects.
294 - D. Mata Sanchez (1 , 2 , 3 2018
The black hole transient V404 Cygni exhibited a bright outburst in June 2015 that was intensively followed over a wide range of wavelengths. Our team obtained high time resolution optical spectroscopy (~90 s), which included a detailed coverage of th e most active phase of the event. We present a database consisting of 651 optical spectra obtained during this event, that we combine with 58 spectra gathered during the fainter December 2015 sequel outburst, as well as with 57 spectra from the 1989 event. We previously reported the discovery of wind-related features (P-Cygni and broad-wing line profiles) during both 2015 outbursts. Here, we build diagnostic diagrams that enable us to study the evolution of typical emission line parameters, such as line fluxes and equivalent widths, and develop a technique to systematically detect outflow signatures. We find that these are present throughout the outburst, even at very low optical fluxes, and that both types of outflow features are observed simultaneously in some spectra, confirming the idea of a common origin. We also show that the nebular phases depict loop patterns in many diagnostic diagrams, while P-Cygni profiles are highly variable on time-scales of minutes. The comparison between the three outbursts reveals that the spectra obtained during June and December 2015 share many similarities, while those from 1989 exhibit narrower emission lines and lower wind terminal velocities. The diagnostic diagrams presented in this work have been produced using standard measurement techniques and thus may be applied to other active low-mass X-ray binaries.
We present results from the Suzaku observations of the dwarf nova SS Cyg in quiescence and outburst in 2005 November. Owing to high sensitivity of the HXD PIN detector and high spectral resolution of the XIS, we have determined parameters of the plas ma with unprecedented precision. The maximum temperature of the plasma in quiescence 20.4 +4.0-2.6 (stat.) +/- 3.0 (sys.) keV is significantly higher than that in outburst 6.0 +0.2-1.3 keV. The elemental abundances are close to the solar ones for the medium-Z elements (Si, S, Ar) whereas they decline both in lighter and heavier elements. Those of oxygen and iron are 0.46 and 0.37 solar, respectively. That of carbon is exceptionally high and 2 solar at least. The solid angle of the reflector subtending over the optically thin thermal plasma is Omega/2pi = 1.7+/-0.2 (stat.) +/-0.1 (sys.) in quiescence. A 6.4 keV iron Ka line is resolved into a narrow and broad components. These facts indicate that both the white dwarf and the accretion disk contribute to the continuum reflection and the 6.4 keV iron Ka line. We consider the standard optically thin boundary layer as the most plausible picture for the plasma configuration in quiescence. The solid angle of the reflector in outburst Omega/2pi = 0.9 +0.5-0.4 and a broad 6.4 keV iron line indicates that the reflection in outburst originates from the accretion disk and an equatorial accretion belt. From the energy width of the 6.4 keV line, we consider the optically thin thermal plasma in outburst as being distributed on the accretion disk like solar coronae.
We have analyzed the variability and spectral evolution of the prototype dwarf nova system SS Cygni using RXTE data and AAVSO observations. A series of pointed RXTE/PCA observations allow us to trace the evolution of the X-ray spectrum of SS Cygni in unprecedented detail, while 6 years of optical AAVSO and RXTE/ASM light curves show long-term patterns. Employing a technique in which we stack the X-ray flux over multiple outbursts, phased according to the optical light curve, we investigate the outburst morphology. We find that the 3-12 keV X-ray flux is suppressed during optical outbursts, a behavior seen previously, but only in a handful of cycles. The several outbursts of SS Cygni observed with the more sensitive RXTE/PCA also show a depression of the X-rays during optical outburst. We quantify the time lags between the optical and X-ray outbursts, and the timescales of the X-ray recovery from outburst. The optical light curve of SS Cygni exhibits brief anomalous outbursts. During these events the hard X-rays and optical flux increase together. The long-term data suggest that the X-rays decline between outburst. Our results are in general agreement with modified disk instability models (DIM), which invoke a two-component accretion flow consisting of a cool optically thick accretion disk truncated at an inner radius, and a quasi-spherical hot corona-like flow extending to the surface of the white dwarf. We discuss our results in the framework of one such model, involving the evaporation of the inner part of the optically thick accretion disk, proposed by Meyer & Meyer-Hofmeister (1994).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا