ترغب بنشر مسار تعليمي؟ اضغط هنا

The Suzaku Observations of SS Cygni in Quiescence and Outburst

160   0   0.0 ( 0 )
 نشر من قبل Manabu Ishida
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present results from the Suzaku observations of the dwarf nova SS Cyg in quiescence and outburst in 2005 November. Owing to high sensitivity of the HXD PIN detector and high spectral resolution of the XIS, we have determined parameters of the plasma with unprecedented precision. The maximum temperature of the plasma in quiescence 20.4 +4.0-2.6 (stat.) +/- 3.0 (sys.) keV is significantly higher than that in outburst 6.0 +0.2-1.3 keV. The elemental abundances are close to the solar ones for the medium-Z elements (Si, S, Ar) whereas they decline both in lighter and heavier elements. Those of oxygen and iron are 0.46 and 0.37 solar, respectively. That of carbon is exceptionally high and 2 solar at least. The solid angle of the reflector subtending over the optically thin thermal plasma is Omega/2pi = 1.7+/-0.2 (stat.) +/-0.1 (sys.) in quiescence. A 6.4 keV iron Ka line is resolved into a narrow and broad components. These facts indicate that both the white dwarf and the accretion disk contribute to the continuum reflection and the 6.4 keV iron Ka line. We consider the standard optically thin boundary layer as the most plausible picture for the plasma configuration in quiescence. The solid angle of the reflector in outburst Omega/2pi = 0.9 +0.5-0.4 and a broad 6.4 keV iron line indicates that the reflection in outburst originates from the accretion disk and an equatorial accretion belt. From the energy width of the 6.4 keV line, we consider the optically thin thermal plasma in outburst as being distributed on the accretion disk like solar coronae.



قيم البحث

اقرأ أيضاً

211 - Knox S. Long 2005
We present time-resolved FUV spectra of the dwarf novae SS Cyg and WX Hyi in quiescence from observations using the Hopkins Ultraviolet Telescope on the Astro-1 and Astro-2 Space Shuttle missions and the Goddard High Resolution Spectrograph on the Hu bble Space Telescope. Both dwarf novae are characterized by blue continua that extend to the Lyman limit punctuated by broad emission lines including transitions of O VI, N V, Si IV, and C IV. The continuum of WX Hyi can be fit with a white dwarf model with physically reasonable model parameters, but neither system actually shows unambiguous signatures of white dwarf emission. The shape and flux of the spectrum of SS Cyg cannot be self-consistently reconciled with a white dwarf providing all of the FUV continuum flux. Combination white dwarf/disk or white dwarf/optically thin plasma models improve the fit but still do not give physically reasonable model parameters for a quiescent dwarf nova. Assuming that the UV emission lines arise from the disk, the line shapes indicate that surface fluxes fall roughly as R^{-2} in both systems. Fits to the double-peaked line profiles in SS Cyg indicate that the FUV line forming region is concentrated closer to the white dwarf than that of the optical lines and provide no evidence of a hole in the inner disk. Although the flux from SS Cyg was relatively constant during all of our observations, WX Hyi showed significant variability during the GHRS observations. In WX Hyi, the line and continuum fluxes are (with the exception of He II) highly correlated, indicating a link between the formation mechanisms of the line and continuum regions.
Chandra HETG spectra of the prototypical dwarf novae SS Cyg and U Gem in quiescence and outburst are presented and discussed. When SS Cyg goes into outburst, it becomes dimmer in hard X-rays and displays a dramatic shift in its relative line strength s, whereas when U Gem goes into outburst, it becomes brighter in hard X-rays and displays only a minor shift in its relative line strengths. In both systems, the emission lines become significantly broader in outburst, signaling the presence of high velocity gas either in Keplerian orbits around the white dwarf or flowing outward from the system.
We present the most complete multiwavelength coverage of any dwarf nova outburst: simultaneous optical, Extreme Ultraviolet Explorer, and Rossi X-ray Timing Explorer observations of SS Cygni throughout a narrow asymmetric outburst. Our data show that the high-energy outburst begins in the X-ray waveband 0.9--1.4d after the beginning of the optical rise and 0.6d before the extreme-ultraviolet rise. The X-ray flux drops suddenly, immediately before the extreme-ultraviolet flux rise, supporting the view that both components arise in the boundary layer between the accretion disc and white dwarf surface. The early rise of the X-ray flux shows the propagation time of the outburst heating wave may have been previously overestimated. The transitions between X-ray and extreme-ultraviolet dominated emission are accompanied by intense variability in the X-ray flux, with timescales of minutes. As detailed by Mauche & Robinson, dwarf nova oscillations are detected throughout the extreme-ultraviolet outburst, but we find they are absent from the X-ray lightcurve. X-ray and extreme-ultraviolet luminosities imply accretion rates of 3e15g/s in quiescence, 1e16g/s when the boundary layer becomes optically thick, and ~1e18g/s at the peak of the outburst. The quiescent accretion rate is two and a half orders of magnitude higher than predicted by the standard disc instability model, and we suggest this may be because the inner accretion disc in SS Cyg is in a permanent outburst state.
230 - V.F. Suleimanov 2012
The Chandra / LETG spectrum of SS Cyg in outburst shows broad (approx 5 A) spectral features that have been interpreted as a large number of absorption lines on a blackbody continuum with a temperature of 250 kK (Mauche 2004). It is most probable tha t this is the spectrum of the fast-rotating optically thick boundary layer on the white dwarf surface. Here we present the results of fitting this spectrum with high gravity hot stellar model atmospheres. An extended set of LTE model atmospheres with solar chemical composition was computed for this purpose. The best fit is obtained with the following parameters: T_eff=190 kK, log g=6.2, and N_H=8 10^{19} cm^{-2}. The spectrum of this model describes the observed spectrum in the 60--125 A range reasonably well, but at shorter wavelengths the observed spectrum has much higher flux. The reasons for this are discussed. The derived low surface gravity supports the hypothesis of the fast rotating boundary layer.
We present the results of our intensive radio observing campaign of the dwarf nova SS Cyg during its 2010 April outburst. We argue that the observed radio emission was produced by synchrotron emission from a transient radio jet. Comparing the radio l ight curves from previous and subsequent outbursts of this system (including high-resolution observations from outbursts in 2011 and 2012) shows that the typical long and short outbursts of this system exhibit reproducible radio outbursts that do not vary significantly between outbursts, which is consistent with the similarity of the observed optical, ultraviolet and X-ray light curves. Contemporaneous optical and X-ray observations show that the radio emission appears to have been triggered at the same time as the initial X-ray flare, which occurs as disk material first reaches the boundary layer. This raises the possibility that the boundary region may be involved in jet production in accreting white dwarf systems. Our high spatial resolution monitoring shows that the compact jet remained active throughout the outburst with no radio quenching.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا