ترغب بنشر مسار تعليمي؟ اضغط هنا

Functional Hashing for Compressing Neural Networks

203   0   0.0 ( 0 )
 نشر من قبل Lei Shi
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

As the complexity of deep neural networks (DNNs) trend to grow to absorb the increasing sizes of data, memory and energy consumption has been receiving more and more attentions for industrial applications, especially on mobile devices. This paper presents a novel structure based on functional hashing to compress DNNs, namely FunHashNN. For each entry in a deep net, FunHashNN uses multiple low-cost hash functions to fetch values in the compression space, and then employs a small reconstruction network to recover that entry. The reconstruction network is plugged into the whole network and trained jointly. FunHashNN includes the recently proposed HashedNets as a degenerated case, and benefits from larger value capacity and less reconstruction loss. We further discuss extensions with dual space hashing and multi-hops. On several benchmark datasets, FunHashNN demonstrates high compression ratios with little loss on prediction accuracy.



قيم البحث

اقرأ أيضاً

In this paper, we present a novel approach for fine-tuning a decoder-side neural network in the context of image compression, such that the weight-updates are better compressible. At encoder side, we fine-tune a pre-trained artifact removal network o n target data by using a compression objective applied on the weight-update. In particular, the compression objective encourages weight-updates which are sparse and closer to quantized values. This way, the final weight-update can be compressed more efficiently by pruning and quantization, and can be included into the encoded bitstream together with the image bitstream of a traditional codec. We show that this approach achieves reconstruction quality which is on-par or slightly superior to a traditional codec, at comparable bitrates. To our knowledge, this is the first attempt to combine image compression and neural networks weight update compression.
A deep neural network is a parametrization of a multilayer mapping of signals in terms of many alternatively arranged linear and nonlinear transformations. The linear transformations, which are generally used in the fully connected as well as convolu tional layers, contain most of the variational parameters that are trained and stored. Compressing a deep neural network to reduce its number of variational parameters but not its prediction power is an important but challenging problem toward the establishment of an optimized scheme in training efficiently these parameters and in lowering the risk of overfitting. Here we show that this problem can be effectively solved by representing linear transformations with matrix product operators (MPOs), which is a tensor network originally proposed in physics to characterize the short-range entanglement in one-dimensional quantum states. We have tested this approach in five typical neural networks, including FC2, LeNet-5, VGG, ResNet, and DenseNet on two widely used data sets, namely, MNIST and CIFAR-10, and found that this MPO representation indeed sets up a faithful and efficient mapping between input and output signals, which can keep or even improve the prediction accuracy with a dramatically reduced number of parameters. Our method greatly simplifies the representations in deep learning, and opens a possible route toward establishing a framework of modern neural networks which might be simpler and cheaper, but more efficient.
We introduce a method to train Binarized Neural Networks (BNNs) - neural networks with binary weights and activations at run-time and when computing the parameters gradient at train-time. We conduct two sets of experiments, each based on a different framework, namely Torch7 and Theano, where we train BNNs on MNIST, CIFAR-10 and SVHN, and achieve nearly state-of-the-art results. During the forward pass, BNNs drastically reduce memory size and accesses, and replace most arithmetic operations with bit-wise operations, which might lead to a great increase in power-efficiency. Last but not least, we wrote a binary matrix multiplication GPU kernel with which it is possible to run our MNIST BNN 7 times faster than with an unoptimized GPU kernel, without suffering any loss in classification accuracy. The code for training and running our BNNs is available.
Deep neural networks currently demonstrate state-of-the-art performance in several domains. At the same time, models of this class are very demanding in terms of computational resources. In particular, a large amount of memory is required by commonly used fully-connected layers, making it hard to use the models on low-end devices and stopping the further increase of the model size. In this paper we convert the dense weight matrices of the fully-connected layers to the Tensor Train format such that the number of parameters is reduced by a huge factor and at the same time the expressive power of the layer is preserved. In particular, for the Very Deep VGG networks we report the compression factor of the dense weight matrix of a fully-connected layer up to 200000 times leading to the compression factor of the whole network up to 7 times.
Recurrent neural networks (RNNs) have been applied to a broad range of applications, including natural language processing, drug discovery, and video recognition. Their vulnerability to input perturbation is also known. Aligning with a view from soft ware defect detection, this paper aims to develop a coverage guided testing approach to systematically exploit the internal behaviour of RNNs, with the expectation that such testing can detect defects with high possibility. Technically, the long short term memory network (LSTM), a major class of RNNs, is thoroughly studied. A family of three test metrics are designed to quantify not only the values but also the temporal relations (including both step-wise and bounded-length) exhibited when LSTM processing inputs. A genetic algorithm is applied to efficiently generate test cases. The test metrics and test case generation algorithm are implemented into a tool TestRNN, which is then evaluated on a set of LSTM benchmarks. Experiments confirm that TestRNN has advantages over the state-of-art tool DeepStellar and attack-based defect detection methods, owing to its working with finer temporal semantics and the consideration of the naturalness of input perturbation. Furthermore, TestRNN enables meaningful information to be collected and exhibited for users to understand the testing results, which is an important step towards interpretable neural network testing.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا