ترغب بنشر مسار تعليمي؟ اضغط هنا

A semiconductor photon-sorter

332   0   0.0 ( 0 )
 نشر من قبل Anthony Bennett
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Photons do not interact directly with each other, but conditional control of one beam by another can be achieved with non-linear optical media at high field intensities. It is exceedingly difficult to reach such intensities at the single photon level but proposals have been made to obtain effective interactions by scattering photons from single transitions. We report here effective interactions between photons created using a quantum dot weakly coupled to a cavity. We show that a passive single-photon non-linearity can modify the counting statistics of a Poissonian beam, sorting the photons in number. This is used to create strong correlations between detection events and sort polarisation correlated photons from an uncorrelated stream using a single spin. These results pave the way for optical switches operated by single quanta of light.



قيم البحث

اقرأ أيضاً

Anyons, particles displaying a fractional exchange statistics intermediate between bosons and fermions, play a central role in the fractional quantum Hall effect and various spin lattice models, and have been proposed for topological quantum computin g schemes due to their resilience to noise. Here we use parametric down-conversion in an integrated semiconductor chip to generate biphoton states simulating anyonic particle statistics, in a reconfigurable manner. Our scheme exploits the frequency entanglement of the photon pairs, which is directly controlled through the spatial shaping of the pump beam. These results, demonstrated at room temperature and telecom wavelength on a chip-integrated platform, pave the way to the practical implementation of quantum simulation tasks with tailored particle statistics.
High-dimensional entangled states of light provide novel possibilities for quantum information, from fundamental tests of quantum mechanics to enhanced computation and communication protocols. In this context, the frequency degree of freedom combines the assets of robustness to propagation and easy handling with standard telecommunication components. Here we use an integrated semiconductor chip to engineer the wavefunction and exchange statistics of frequency-entangled photon pairs directly at the generation stage, without post-manipulation. Tuning the spatial properties of the pump beam allows to generate frequency-anticorrelated, correlated and separable states, and to control the symmetry of the spectral wavefunction to induce either bosonic or fermionic behaviors. These results, supported by analytical and numerical calculations, open promising perspectives for the quantum simulation of fermionic problems with photons on an integrated platform, as well as for communication and computation protocols exploiting antisymmetric high-dimensional quantum states.
The realization of a coherent interface between distant charge or spin qubits in semiconductor quantum dots is an open challenge for quantum information processing. Here we demonstrate both resonant and non-resonant photon-mediated coherent interacti ons between double quantum dot charge qubits separated by several tens of micrometers. We present clear spectroscopic evidence of the collective enhancement of the resonant coupling of two qubits. With both qubits detuned from the resonator we observe exchange coupling between the qubits mediated by virtual photons. In both instances pronounced bright and dark states governed by the symmetry of the qubit-field interaction are found. Our observations are in excellent quantitative agreement with master-equation simulations. The extracted two-qubit coupling strengths significantly exceed the linewidths of the combined resonator-qubit system. This indicates that this approach is viable for creating photon-mediated two-qubit gates in quantum dot based systems.
Semiconductor qubits rely on the control of charge and spin degrees of freedom of electrons or holes confined in quantum dots (QDs). They constitute a promising approach to quantum information processing [1, 2], complementary to superconducting qubit s [3]. Typically, semiconductor qubit-qubit coupling is short range [1, 2, 4, 5], effectively limiting qubit distance to the spatial extent of the wavefunction of the confined particle, which represents a significant constraint towards scaling to reach dense 1D or 2D arrays of QD qubits. Following the success of circuit quantum eletrodynamics [6], the strong coupling regime between the charge [7, 8] and spin [9, 10, 11] degrees of freedom of electrons confined in semiconducting QDs interacting with individual photons stored in a microwave resonator has recently been achieved. In this letter, we demonstrate coherent coupling between a superconducting transmon qubit and a semiconductor double quantum dot (DQD) charge qubit mediated by virtual microwave photon excitations in a tunable high-impedance SQUID array resonator acting as a quantum bus [12, 13, 14]. The transmon-charge qubit coherent coupling rate ($ sim$ 21 MHz) exceeds the linewidth of both the transmon ($ sim$ 0.8 MHz) and the DQD charge ($ sim$ 3 MHz) qubit. By tuning the qubits into resonance for a controlled amount of time, we observe coherent oscillations between the constituents of this hybrid quantum system. These results enable a new class of experiments exploring the use of the two-qubit interactions mediated by microwave photons to create entangled states between semiconductor and superconducting qubits. The methods and techniques presented here are transferable to QD devices based on other material systems and can be beneficial for spin-based hybrid systems.
76 - Mario Schwartz 2018
Photonic quantum technologies such as quantum cryptography, photonic quantum metrology, photonic quantum simulators and computers will largely benefit from highly scalable and small footprint quantum photonic circuits. To perform fully on-chip quantu m photonic operations, three basic building blocks are required: single-photon sources, photonic circuits and single-photon detectors. Highly integrated quantum photonic chips on silicon and related platforms have been demonstrated incorporating only one or two of these basic building blocks. Previous implementations of all three components were mainly limited by laser stray light, making temporal filtering necessary or required complex manipulation to transfer all components onto one chip. So far, a monolithic, simultaneous implementation of all elements demonstrating single-photon operation remains elusive. Here, we present a fully-integrated Hanbury-Brown and Twiss setup on a micron-sized footprint, consisting of a GaAs waveguide embedding quantum dots as single-photon sources, a waveguide beamsplitter and two superconducting nanowire single-photon detectors. This enables a second-order correlation measurement at the single-photon level under both continuous-wave and pulsed resonant excitation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا