ترغب بنشر مسار تعليمي؟ اضغط هنا

Ionization fraction and the enhanced sulfur chemistry in Barnard 1

98   0   0.0 ( 0 )
 نشر من قبل Asunci\\'on Fuente
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Barnard B1b has revealed as one of the most interesting globules from the chemical and dynamical point of view. It presents a rich molecular chemistry characterized by large abundances of deuterated and complex molecules. Furthermore, it hosts an extremely young Class 0 object and one candidate to First Hydrostatic Core (FHSC). Our aim was to determine the cosmic ray ionization rate and the depletion factors in this extremely young star forming region. We carried out a spectral survey towards Barnard 1b as part of the IRAM Large program ASAI using the IRAM 30-m telescope at Pico Veleta (Spain). This provided a very complete inventory of neutral and ionic C-, N- and S- bearing species with, up to our knowledge, the first secure detections of the deuterated ions DCS+ and DOCO+. We used a state-of-the-art pseudo-time-dependent gas-phase chemical model to determine the value of the cosmic ray ionization rate and the depletion factors. The observational data were well fitted with $zeta_{H_2}$ between 3E-17 s$^{-1}$ and 1E-16 s$^{-1}$. Elemental depletions were estimated to be ~10 for C and O, ~1 for N and ~25 for S. Barnard B1b presents similar depletions of C and O than those measured in pre-stellar cores. The depletion of sulfur is higher than that of C and O but not as extreme as in cold cores. In fact, it is similar to the values found in some bipolar outflows, hot cores and photon-dominated regions. Several scenarios are discussed to account for these peculiar abundances. We propose that it is the consequence of the initial conditions (important outflows and enhanced UV fields in the surroundings) and a rapid collapse (~0.1 Myr) that permits to maintain most S- and N-bearing species in gas phase to great optical depths. The interaction of the compact outflow associated with B1b-S with the surrounding material could enhance the abundances of S-bearing molecules, as well.



قيم البحث

اقرأ أيضاً

Hydride molecules lie at the base of interstellar chemistry, but the synthesis of sulfuretted hydrides is poorly understood. Motivated by new observations of the Orion Bar PDR - 1 resolution ALMA images of SH+; IRAM 30m detections of H2S, H2S34, and H2S33; H3S+ (upper limits); and SOFIA observations of SH - we perform a systematic study of the chemistry of S-bearing hydrides. We determine their column densities using coupled excitation, radiative transfer as well as chemical formation and destruction models. We revise some of the key gas-phase reactions that lead to their chemical synthesis. This includes ab initio quantum calculations of the vibrational-state-dependent reactions SH+ + H2 <-> H2S+ + H and S + H2 <-> SH + H. We find that reactions of UV-pumped H2 (v>1) with S+ explain the presence of SH+ in a high thermal-pressure gas component, P_th~10^8 cm^-3 K, close to the H2 dissociation front. However, subsequent hydrogen abstraction reactions of SH+, H2S+, and S with vibrationally excited H2, fail to ultimately explain the observed H2S column density (~2.5x10^14 cm^-2, with an ortho-to-para ratio of 2.9+/-0.3). To overcome these bottlenecks, we build PDR models that include a simple network of grain surface reactions leading to the formation of solid H2S (s-H2S). The higher adsorption binding energies of S and SH suggested by recent studies imply that S atoms adsorb on grains (and form s-H2S) at warmer dust temperatures and closer to the UV-illuminated edges of molecular clouds. Photodesorption and, to a lesser extent, chemical desorption, produce roughly the same H2S column density (a few 10^14 cm-^2) and abundance peak (a few 10^-8) nearly independently of n_H and G_0. This agrees with the observed H2S column density in the Orion Bar as well as at the edges of dark clouds without invoking substantial depletion of elemental sulfur abundances.
Cosmic rays pervade the Galaxy and are thought to be accelerated in supernova shocks. The interaction of cosmic rays with dense interstellar matter has two important effects: 1) high energy (>1 GeV) protons produce {gamma}-rays by {pi}0-meson decay; 2) low energy (< 1 GeV) cosmic rays (protons and electrons) ionize the gas. We present here new observations towards a molecular cloud close to the W51C supernova remnant and associated with a recently discovered TeV {gamma}-ray source. Our observations show that the cloud ionization degree is highly enhanced, implying a cosmic ray ionization rate ~ 10-15 s-1, i.e. 100 times larger than the standard value in molecular clouds. This is consistent with the idea that the cloud is irradiated by an enhanced flux of freshly accelerated low-energy cosmic rays. In addition, the observed high cosmic ray ionization rate leads to an instability in the chemistry of the cloud, which keeps the electron fraction high, ~ 10-5, in a large fraction (Av geq 6mag) of the cloud and low, ~ 10-7, in the interior. The two states have been predicted in the literature as high- and low-ionization phases (HIP and LIP). This is the observational evidence of their simultaneous presence in a cloud.
The electron density ($n_{e^{-}}$) plays an important role in setting the chemistry and physics of the interstellar medium. However, measurements of $n_{e^{-}}$ in neutral clouds have been directly obtained only toward a few lines of sight or they re ly on indirect determinations. We use carbon radio recombination lines and the far-infrared lines of C$^{+}$ to directly measure $n_{e^{-}}$ and the gas temperature in the envelope of the integral shaped filament (ISF) in the Orion A molecular cloud. We observed the C$102alpha$ and C$109alpha$ carbon radio recombination lines (CRRLs) using the Effelsberg 100m telescope at ~2 resolution toward five positions in OMC-2 and OMC-3. Since the CRRLs have similar line properties, we averaged them to increase the signal-to-noise ratio of the spectra. We compared the intensities of the averaged CRRLs, and the 158 {mu}m-[CII] and [$^{13}$CII] lines to the predictions of a homogeneous model for the C$^{+}$/C interface in the envelope of a molecular cloud and from this comparison we determined the electron density, temperature and C$^{+}$ column density of the gas. We detect the CRRLs toward four positions, where their velocity and widths (FWHM 2.3 km s$^{-1}$) confirms that they trace the envelope of the ISF. Toward two positions we detect the CRRLs, and the [CII] and [$^{13}$CII] lines with a signal-to-noise ratio >5, and we find $n_{e^{-}}=0.65pm0.12$ cm$^{-3}$ and $0.95pm0.02$ cm$^{-3}$, which corresponds to a gas density $n_{H}approx5times10^{3}$ cm$^{-3}$ and a thermal pressure of $p_{th}approx4times10^{5}$ K cm$^{-3}$. We also constrained the ionization fraction in the denser portions of the molecular cloud using the HCN(1-0) and C$_{2}$H(1-0) lines to $x(e^{-})<3times10^{-6}$. The derived electron densities and ionization fraction imply that $x(e^{-})$ drops by a factor >100 between the C$^{+}$ layer and the regions probed by HCN(1-0).
88 - D. Semenov 2018
Context. Several sulfur-bearing molecules are observed in the interstellar medium and in comets, in strong contrast to protoplanetary disks where only CS, H$_2$CS and SO have been detected so far. Aims. We combine observations and chemical models to constrain the sulfur abundances and their sensitivity to physical and chemical conditions in the DM Tau protoplanetary disk. Methods. We obtained $0.5^{}$ ALMA observations of DM Tau in Bands 4 and 6 in lines of CS, SO, SO$_2$, OCS, CCS, H$_2$CS and H$_2$S, achieving a $sim 5$ mJy sensitivity. Using the non-LTE radiative transfer code RADEX and the forward-modeling tool DiskFit, disk-averaged CS column densities and upper limits for the other species were derived. Results. Only CS was detected with a derived column density of $sim 2-6 times 10^{12}$ cm$^{-2}$. We report a first tentative detection of SO$_2$ in DM Tau. The upper limits range between $sim 10^{11}$ and $10^{14}$ cm$^{-2}$ for the other S-bearing species. The best-fit chemical model matching these values requires a gas-phase C/O ratio of > 1 at $r sim 50-100$ au. With chemical modeling we demonstrate that sulfur-bearing species could be robust tracers of the gas-phase C/O ratio, surface reaction rates, grain size and UV intensities. Conclusions. The lack of detections of a variety of sulfur-bearing molecules in DM Tau other than CS implies a dearth of reactive sulfur in the gas phase, either through efficient freeze-out or because most of the elemental sulfur is in other large species, as found in comets. The inferred high CS/SO and CS/SO$_2$ ratios require a non-solar C/O gas-phase ratio of > 1, consistent with the recent observations of hydrocarbon rings in DM Tau. The stronger depletion of oxygen-bearing S-species compared to CS is likely linked to the low observed abundances of gaseous water in DM Tau and points to a removal mechanism of oxygen from the gas.
403 - David A. Neufeld 2016
We present a general parameter study, in which the abundance of interstellar argonium (ArH$^+$) is predicted using a model for the physics and chemistry of diffuse interstellar gas clouds. Results have been obtained as a function of UV radiation fiel d, cosmic-ray ionization rate, and cloud extinction. No single set of cloud parameters provides an acceptable fit to the typical ArH$^+$, OH$^+$ and $rm H_2O^+$ abundances observed in diffuse clouds within the Galactic disk. Instead, the observed abundances suggest that ArH$^+$ resides primarily in a separate population of small clouds of total visual extinction of at most 0.02 mag per cloud, within which the column-averaged molecular fraction is in the range $10^{-5} - 10^{-2}$, while OH$^+$ and $rm H_2O^+$ reside primarily in somewhat larger clouds with a column-averaged molecular fraction $sim 0.2$. This analysis confirms our previous suggestion that the argonium molecular ion is a unique tracer of almost purely atomic gas.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا