ﻻ يوجد ملخص باللغة العربية
Most existing studies of the angular momentum evolution of young stellar populations have focused on the youngest (1-3 Myr) T Tauri stars. In contrast, the angular momentum distributions of older T Tauri stars (4-10 Myr) have been less studied, even though they hold key insight to understanding stellar angular momentum evolution at a time when protoplanetary disks have largely dissipated and when models therefore predict changes in the rotational evolution that can in principle be tested. We present a study of photometric variability among 1,974 confirmed T Tauri members of various sub-regions of the Orion OB1 association, and with ages spanning 4-10 Myr, using optical time-series from three different surveys. For 564 of the stars (~32% of the weak-lined T Tauri stars and ~13% of the classical T Tauri stars in our sample) we detect statistically significant periodic variations which we attribute to the stellar rotation periods, making this one of the largest samples of T Tauri star rotation periods yet published. We observe a clear change in the overall rotation period distributions over the age range 4-10 Myr, with the progressively older sub-populations exhibiting systematically faster rotation. This result is consistent with angular momentum evolution model predictions of an important qualitative change in the stellar rotation periods starting at ~5 Myr, an age range for which very few observational constraints were previously available.
We present emph{Herschel} PACS observations of 8 Classical T Tauri Stars in the $sim 7-10$ Myr old OB1a and the $sim 4-5$ Myr old OB1b Orion sub-asscociations. Detailed modeling of the broadband spectral energy distributions, particularly the strong
Statistics of low-mass pre-main sequence binaries in the Orion OB1 association with separations ranging from 0.6 to 20 (220 to 7400 au at 370 pc) are studied using images from the VISTA Orion mini-survey and astrometry from Gaia. The input sample bas
The bulk of X-ray emission from pre-main-sequence (PMS) stars is coronal in origin. We demonstrate herein that stars on Henyey tracks in the Hertzsprung-Russell diagram have lower $log(L_X/L_ast)$, on average, than stars on Hayashi tracks. This effec
Attention is given to a population of 110 stars in the NGC 6611 cluster of the Eagle Nebula that have prominent near-infrared (NIR) excess and optical colours typical of pre-main sequence (PMS) stars older than 8 Myr. At least half of those for which
The Chandra High Energy Transmission Gratings (HETG) Orion Legacy Project (HOLP) is the first comprehensive set of observations of a very young massive stellar cluster which provides high resolution X-ray spectra of very young stars over a wide mass