ﻻ يوجد ملخص باللغة العربية
In this paper a sampling theory for unitary invariant subspaces associated to locally compact abelian (LCA) groups is deduced. Working in the LCA group context allows to obtain, in a unified way, sampling results valid for a wide range of problems which are interesting in practice, avoiding also cumbersome notation. Along with LCA groups theory, the involved mathematical technique is that of frame theory which meets matrix analysis when appropriate dual frames are computed.
By analytic perturbations, we refer to shifts that are finite rank perturbations of the form $M_z + F$, where $M_z$ is the unilateral shift and $F$ is a finite rank operator on the Hardy space over the open unit disc. Here shift refers to the multipl
In this note we extend D. Singh and A. A. W. Mehannas invariant subspace theorem for $RH^1$ (the real Banach space of analytic functions in $H^1$ with real Taylor coefficients) to the simply invariant subspaces of $RL^1$ (the real Banach space of functions in $L^1$ with real Fourier coefficients).
We show that any bounded operator $T$ on a separable, reflexive, infinite-dimensional Banach space $X$ admits a rank one perturbation which has an invariant subspace of infinite dimension and codimension. In the non-reflexive spaces, we show that the
Necessary and sufficient conditions are given for density of shift-invariant subspaces of the space $mathcal{L}$ of integrable functions of bounded support with the inductive limit topology.
We compute the second (and the first) cohomology groups of $^*$-algebras associated to the universal quantum unitary groups of not neccesarily Kac type, extending our earlier results for the free unitary group $U_d^+$. The extended setup forces us to