ﻻ يوجد ملخص باللغة العربية
We propose a method to measure the quantum state of a single mode of the electromagnetic field. The method is based on the interaction of the field with a probe qubit. The qubit polarizations along coordinate axes are functions of the interaction time and from their Fourier transform we can in general fully reconstruct pure states of the field and obtain partial information in the case of mixed states. The method is illustrated by several examples, including the superposition of Fock states, coherent states, and exotic states generated by the dynamical Casimir effect.
We study the protective measurement of a qubit by a second qubit acting as a probe. Consideration of this model is motivated by the possibility of its experimental implementation in multiqubit systems such as trapped ions. In our scheme, information
Quantum phase transitions occur when the ground state of a quantum system undergoes a qualitative change when an external control parameter reaches a critical value. Here, we demonstrate a technique for studying quantum systems undergoing a phase tra
A two-qubit quantum gate is realized using electronic excited states in a single ion with an energy separation on the order of a terahertz times the Planck constant as a qubit. Two phase locked lasers are used to excite a stimulated Raman transition
An experiment is performed to reconstruct an unknown photonic quantum state with a limited amount of copies. A semi-quantum reinforcement learning approach is employed to adapt one qubit state, an agent, to an unknown quantum state, an environment, b
In addition to their central role in quantum information processing, qubits have proven to be useful tools in a range of other applications such as enhanced quantum sensing and as spectrometers of quantum noise. Here we show that a superconducting qu