ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconducting qubit as a probe of quantum fluctuations in a nonlinear resonator

246   0   0.0 ( 0 )
 نشر من قبل Maxime Boissonneault
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In addition to their central role in quantum information processing, qubits have proven to be useful tools in a range of other applications such as enhanced quantum sensing and as spectrometers of quantum noise. Here we show that a superconducting qubit strongly coupled to a nonlinear resonator can act as a probe of quantum fluctuations of the intra-resonator field. Building on previous work [M. Boissoneault et al. Phys. Rev. A 85, 022305 (2012)], we derive an effective master equation for the qubit which takes into account squeezing of the resonator field. We show how sidebands in the qubit excitation spectrum that are predicted by this model can reveal information about squeezing and quantum heating. The main results of this paper have already been successfully compared to experimental data [F. R. Ong et al. Phys. Rev. Lett. 110, 047001 (2013)] and we present here the details of the derivations.



قيم البحث

اقرأ أيضاً

We measure the quantum fluctuations of a pumped nonlinear resonator, using a superconducting artificial atom as an in-situ probe. The qubit excitation spectrum gives access to the frequency and temperature of the intracavity field fluctuations. These are found to be in agreement with theoretical predictions; in particular we experimentally observe the phenomenon of quantum heating.
We study the backaction of a driven nonlinear resonator on a multi-level superconducting qubit. Using unitary transformations on the multi-level Jaynes-Cummings Hamiltonian and quantum optics master equation, we derive an analytical model that goes b eyond linear response theory. Within the limits of validity of the model, we obtain quantitative agreement with experimental and numerical data, both in the bifurcation and in the parametric amplification regimes of the nonlinear resonator. We show in particular that the measurement-induced dephasing rate of the qubit can be rather small at high drive power. This is in contrast to measurement with a linear resonator where this rate increases with the drive power. Finally, we show that, for typical parameters of circuit quantum electrodynamics, correctly describing measurement-induced dephasing requires a model going beyond linear response theory, such as the one presented here.
Phonon modes at microwave frequencies can be cooled to their quantum ground state using conventional cryogenic refrigeration, providing a convenient way to study and manipulate quantum states at the single phonon level. Phonons are of particular inte rest because mechanical deformations can mediate interactions with a wide range of different quantum systems, including solid-state defects, superconducting qubits, as well as optical photons when using optomechanically-active constructs. Phonons thus hold promise for quantum-focused applications as diverse as sensing, information processing, and communication. Here, we describe a piezoelectric quantum bulk acoustic resonator (QBAR) with a 4.88 GHz resonant frequency that at cryogenic temperatures displays large electromechanical coupling strength combined with a high intrinsic mechanical quality factor $Q_i approx 4.3 times 10^4$. Using a recently-developed flip-chip technique, we couple this QBAR resonator to a superconducting qubit on a separate die and demonstrate quantum control of the mechanics in the coupled system. This approach promises a facile and flexible experimental approach to quantum acoustics and hybrid quantum systems.
145 - M.P. Blencowe , A.D. Armour 2008
We describe a possible implementation of the nanomechanical quantum superposition generation and detection scheme described in the preceding, companion paper [Armour A D and Blencowe M P 2008 New. J. Phys. Submitted]. The implementation is based on t he circuit quantum electrodynamics (QED) set-up, with the addition of a mechanical degree of freedom formed out of a suspended, doubly-clamped segment of the superconducting loop of a dc SQUID located directly opposite the centre conductor of a coplanar waveguide (CPW). The relative merits of two SQUID based qubit realizations are addressed, in particular a capacitively coupled charge qubit and inductively coupled flux qubit. It is found that both realizations are equally promising, with comparable qubit-mechanical resonator mode as well as qubit-microwave resonator mode coupling strengths.
Metamaterial resonant structures made from arrays of superconducting lumped circuit elements can exhibit microwave mode spectra with left-handed dispersion, resulting in a high density of modes in the same frequency range where superconducting qubits are typically operated, as well as a bandgap at lower frequencies that extends down to dc. Using this novel regime for multi-mode circuit quantum electrodynamics, we have performed a series of measurements of such a superconducting metamaterial resonator coupled to a flux-tunable transmon qubit. Through microwave measurements of the metamaterial, we have observed the coupling of the qubit to each of the modes that it passes through. Using a separate readout resonator, we have probed the qubit dispersively and characterized the qubit energy relaxation as a function of frequency, which is strongly affected by the Purcell effect in the presence of the dense mode spectrum. Additionally, we have investigated the ac Stark shift of the qubit as the photon number in the various metamaterial modes is varied. The ability to tailor the dense mode spectrum through the choice of circuit parameters and manipulate the photonic state of the metamaterial through interactions with qubits makes this a promising platform for analog quantum simulation and quantum memories.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا