ﻻ يوجد ملخص باللغة العربية
We discuss the role of quantum fluctuations in Heisenberg antiferromagnets on face-centered cubic lattice with small dipolar interaction in which the next-nearest-neighbor exchange coupling dominates over the nearest-neighbor one. It is well known that a collinear magnetic structure which contains (111) ferromagnetic planes arranged antiferromagnetically along one of the space diagonals of the cube is stabilized in this model via order-by-disorder mechanism. On the mean-field level, the dipolar interaction forces spins to lie within (111) planes. By considering 1/S - corrections to the ground state energy, we demonstrate that quantum fluctuations lead to an anisotropy within (111) planes favoring three equivalent directions for the staggered magnetization (e.g., $[11overline{2}]$, $[1overline{2}1]$, and $[overline{2}11]$ directions for (111) plane). Such in-plane anisotropy was obtained experimentally in related materials MnO, $alpha$-MnS, $alpha$-MnSe, EuTe, and EuSe. We find that the order-by-disorder mechanism can contribute significantly to the value of the in-plane anisotropy in EuTe. Magnon spectrum is also derived in the first order in 1/S.
The models constructed by Affleck, Kennedy, Lieb, and Tasaki describe a family of quantum antiferromagnets on arbitrary lattices, where the local spin S is an integer multiple M of half the lattice coordination number. The equal time quantum correlat
We identify and discuss the ground state of a quantum magnet on a triangular lattice with bond-dependent Ising-type spin couplings, that is, a triangular analog of the Kitaev honeycomb model. The classical ground-state manifold of the model is spanne
The classical ground states of the SU(4) Heisenberg model on the face centered cubic lattice constitute a highly degenerate manifold. We explicitly construct all the classical ground states of the model. To describe quantum fluctuations above these c
We investigate the spin $S=1/2$ Heisenberg model on the body centered cubic lattice in the presence of ferromagnetic and antiferromagnetic nearest-neighbor $J_{1}$, second-neighbor $J_{2}$, and third-neighbor $J_{3}$ exchange interactions. The classi
In this paper the elementary moves of the BFACF-algorithm for lattice polygons are generalised to elementary moves of BFACF-style algorithms for lattice polygons in the body-centred (BCC) and face-centred (FCC) cubic lattices. We prove that the ergod