ترغب بنشر مسار تعليمي؟ اضغط هنا

Order-by-disorder effects in antiferromagnets on face-centered cubic lattice

228   0   0.0 ( 0 )
 نشر من قبل Lev Batalov
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the role of quantum fluctuations in Heisenberg antiferromagnets on face-centered cubic lattice with small dipolar interaction in which the next-nearest-neighbor exchange coupling dominates over the nearest-neighbor one. It is well known that a collinear magnetic structure which contains (111) ferromagnetic planes arranged antiferromagnetically along one of the space diagonals of the cube is stabilized in this model via order-by-disorder mechanism. On the mean-field level, the dipolar interaction forces spins to lie within (111) planes. By considering 1/S - corrections to the ground state energy, we demonstrate that quantum fluctuations lead to an anisotropy within (111) planes favoring three equivalent directions for the staggered magnetization (e.g., $[11overline{2}]$, $[1overline{2}1]$, and $[overline{2}11]$ directions for (111) plane). Such in-plane anisotropy was obtained experimentally in related materials MnO, $alpha$-MnS, $alpha$-MnSe, EuTe, and EuSe. We find that the order-by-disorder mechanism can contribute significantly to the value of the in-plane anisotropy in EuTe. Magnon spectrum is also derived in the first order in 1/S.



قيم البحث

اقرأ أيضاً

The models constructed by Affleck, Kennedy, Lieb, and Tasaki describe a family of quantum antiferromagnets on arbitrary lattices, where the local spin S is an integer multiple M of half the lattice coordination number. The equal time quantum correlat ions in their ground states may be computed as finite temperature correlations of a classical O(3) model on the same lattice, where the temperature is given by T=1/M. In dimensions d=1 and d=2 this mapping implies that all AKLT states are quantum disordered. We consider AKLT states in d=3 where the nature of the AKLT states is now a question of detail depending upon the choice of lattice and spin; for sufficiently large S some form of Neel order is almost inevitable. On the unfrustrated cubic lattice, we find that all AKLT states are ordered while for the unfrustrated diamond lattice the minimal S=2 state is disordered while all other states are ordered. On the frustrated pyrochlore lattice, we find (conservatively) that several states starting with the minimal S=3 state are disordered. The disordered AKLT models we report here are a significant addition to the catalog of magnetic Hamiltonians in d=3 with ground states known to lack order on account of strong quantum fluctuations.
We identify and discuss the ground state of a quantum magnet on a triangular lattice with bond-dependent Ising-type spin couplings, that is, a triangular analog of the Kitaev honeycomb model. The classical ground-state manifold of the model is spanne d by decoupled Ising-type chains, and its accidental degeneracy is due to the frustrated nature of the anisotropic spin couplings. We show how this subextensive degeneracy is lifted by a quantum order-by-disorder mechanism and study the quantum selection of the ground state by treating short-wavelength fluctuations within the linked cluster expansion and by using the complementary spin-wave theory. We find that quantum fluctuations couple next-nearest-neighbor chains through an emergent four-spin interaction, while nearest-neighbor chains remain decoupled. The remaining discrete degeneracy of the ground state is shown to be protected by a hidden symmetry of the model.
130 - P. Sinkovicz , G. Szirmai , 2015
The classical ground states of the SU(4) Heisenberg model on the face centered cubic lattice constitute a highly degenerate manifold. We explicitly construct all the classical ground states of the model. To describe quantum fluctuations above these c lassical states, we apply linear flavor-wave theory. At zero temperature, the bosonic flavor waves select the simplest of these SU(4) symmetry breaking states, the four-sublattice ordered state defined by the cubic unit cell of the fcc lattice. Due to geometrical constraints, flavor waves interact along specific planes only, thus rendering the system effectively two dimensional and forbidding ordering at finite temperatures. We argue that longer range interactions generated by quantum fluctuations can shift the transition to finite temperatures.
We investigate the spin $S=1/2$ Heisenberg model on the body centered cubic lattice in the presence of ferromagnetic and antiferromagnetic nearest-neighbor $J_{1}$, second-neighbor $J_{2}$, and third-neighbor $J_{3}$ exchange interactions. The classi cal ground state phase diagram obtained by a Luttinger-Tisza analysis is shown to host six different (noncollinear) helimagnetic orders in addition to ferromagnetic, Neel, stripe and planar antiferromagnetic orders. Employing the pseudofermion functional renormalization group (PFFRG) method for quantum spins ($S=1/2$) we find an extended nonmagnetic region, and significant shifts to the classical phase boundaries and helimagnetic pitch vectors caused by quantum fluctuations while no new long-range dipolar magnetic orders are stabilized. The nonmagnetic phase is found to disappear for $S=1$. We calculate the magnetic ordering temperatures from PFFRG and quantum Monte Carlo methods, and make comparisons to available data
In this paper the elementary moves of the BFACF-algorithm for lattice polygons are generalised to elementary moves of BFACF-style algorithms for lattice polygons in the body-centred (BCC) and face-centred (FCC) cubic lattices. We prove that the ergod icity classes of these new elementary moves coincide with the knot types of unrooted polygons in the BCC and FCC lattices and so expand a similar result for the cubic lattice. Implementations of these algorithms for knotted polygons using the GAS algorithm produce estimates of the minimal length of knotted polygons in the BCC and FCC lattices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا