ﻻ يوجد ملخص باللغة العربية
Vortex core polarity switching in NiFe disks has been evidenced using an all-electrical rectification scheme. Both simulation and experiments yield a consistent loss of the rectified signal when driving the core at high powers near its gyrotropic resonant frequency. The frequency range over which the loss occurs grows and shifts with increasing signal power, consistent with non-linear core dynamics and periodic switching of the core polarity induced by the core attaining its critical velocity. We demonstrate that core polarity switching can be impeded by displacing the core towards the disks edge where an increased core stiffness reduces the maximum attainable core velocity.
A magnetic vortex is a curling magnetic structure realized in a ferromagnetic disk, which is a promising candidate of a memory cell for future nonvolatile data storage devices. Thus, understanding of the stability and dynamical behaviour of the magne
Magnetic vortex cores exhibit a gyrotropic motion, and may reach a critical velocity, at which point they invert their z-component of the magnetization. We performed micromagnetic simulations to describe this vortex core polarity reversal in magnetic
Dynamics of magnetic vortex core switching in nanometer-scale permalloy disk, having a single vortex ground state, was investigated by micromagnetic modeling. When an in-plane magnetic field pulse with an appropriate strength and duration is applied
The seeding of vortex domain walls in V-shaped nanowires by a magnetic field has been investigated via simulations and Scanning Electron Microscopy with Polarization Analysis (SEMPA). It is found that the orientation of the magnetic field can be used
We report on the switching of the magnetic vortex core in a Pac-man disk using a magnetic field pulse, investigated via micromagnetic simulations. The minimum core switching field is reduced by 72 % compared to that of a circular disk with the same d