ترغب بنشر مسار تعليمي؟ اضغط هنا

2D vibrational properties of epitaxial silicene on Ag(111) probed by in situ Raman Spectroscopy

86   0   0.0 ( 0 )
 نشر من قبل Dmytro Solonenko
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The two-dimensional silicon allotrope, silicene, could spur the development of new and original concepts in Si-based nanotechnology. Up to now silicene can only be epitaxially synthesized on a supporting substrate such as Ag(111). Even though the structural and electronic properties of these epitaxial silicene layers have been intensively studied, very little is known about its vibrational characteristics. Here, we present a detailed study of epitaxial silicene on Ag(111) using textit{in situ} Raman spectroscopy, which is one of the most extensively employed experimental techniques to characterize 2D materials, such as graphene, transition metal dichalcogenides, and black phosphorous. The vibrational fingerprint of epitaxial silicene, in contrast to all previous interpretations, is characterized by three distinct phonon modes with A and E symmetries. The temperature dependent spectral evolution of these modes demonstrates unique thermal properties of epitaxial silicene and a significant electron-phonon coupling. These results unambiguously support the purely two-dimensional character of epitaxial silicene up to about $300^{circ}C$, whereupon a 2D-to-3D phase transition takes place.



قيم البحث

اقرأ أيضاً

The evolution of titanyl-phthalocyanine (TiOPc) thin films on Ag(111) has been investigated using IRAS, SPA-LEED and STM. In the (sub)monolayer regime various phases are observed that can be assigned to a 2D gas, a commensurate and a point-on-line ph ase. In all three phases the non-planar TiOPc molecule is adsorbed on Ag(111) in an oxygen-up configuration with the molecular pi-conjugated backbone oriented parallel to the surface. The commensurate phase reveals a high packing density, containing two molecules at inequivalent adsorption sites within the unit cell. Both molecules assume different azimuthal orientations which is ascribed to preferred sites and azimuthal orientations with respect to the Ag(111) substrate and, to a lesser extent, to a minimization of repulsive Pauli interactions between adjacent molecules at short distances. At full saturation of the monolayer the latter interaction becomes dominant and the commensurate long range order is lost. DFT calculations have been used to study different adsorption geometries of TiOPc on Ag(111). The most stable configurations among those with pointing up oxygen atoms (bridge+, bridgex, topx) seem to correspond to those identified experimentally. The calculated dependence of the electronic structure and molecular dipole on the adsorption site and configuration is found to be rather small.
We model Raman processes in silicene and germanene involving scattering of quasiparticles by, either, two phonons, or, one phonon and one point defect. We compute the resonance Raman intensities and lifetimes for laser excitations between 1 and 3$,$e V using a newly developed third-nearest neighbour tight-binding model parametrized from first principles density functional theory. We identify features in the Raman spectra that are unique to the studied materials or the defects therein. We find that in silicene, a new Raman resonance arises from the $2.77,rm$eV $pi-sigma$ plasmon at the M point, measurably higher than the Raman resonance originating from the $2.12,rm$eV $pi$ plasmon energy. We show that in germanene, the lifetimes of charge carriers, and thereby the linewidths of the Raman peaks, are influenced by spin-orbit splittings within the electronic structure. We use our model to predict scattering cross sections for defect induced Raman scattering involving adatoms, substitutional impurities, Stone-Wales pairs, and vacancies, and argue that the presence of each of these defects in silicene and germanene can be qualitatively matched to specific features in the Raman response.
In this Letter, we present the first non-contact atomic force microscopy (nc-AFM) of a silicene on silver (Ag) surface, obtained by combining non-contact atomic force microscopy (nc-AFM) and scanning tunneling microscopy (STM). STM images over large areas of silicene grown on Ag(111) surface show both (sqrt13xsqrt13)R13.9{deg} and (4x4) superstructures. For the widely observed (4x4) structure, the nc-AFM topography shows an atomic-scale contrast inversion as the tip-surface distance is decreased. At the shortest tip-surface distance, the nc-AFM topography is very similar to the STM one. The observed structure in the nc-AFM topography is compatible with only one out of two silicon atoms being visible. This indicates unambiguously a strong buckling of the silicene honeycomb layer.
We report first-principles calculations that clarify stability and electronic structures of silicene on Ag(111) surfaces. We find that several stable structures exist for silicene/Ag(111), exhibiting a variety of images of scanning tunneling microsco py. We also find that Dirac electrons are {em absent} near Fermi energy in all the stable structures due to buckling of the Si monolayer and mixing between Si and Ag orbitals. We instead propose that either BN substrate or hydrogen processing of Si surface is a good candidate to preserve Dirac electrons in silicene.
201 - Ya Feng , Defa Liu , Baojie Feng 2015
Silicene, analogous to graphene, is a one-atom-thick two-dimensional crystal of silicon which is expected to share many of the remarkable properties of graphene. The buckled honeycomb structure of silicene, along with its enhanced spin-orbit coupling , endows silicene with considerable advantages over graphene in that the spin-split states in silicene are tunable with external fields. Although the low-energy Dirac cone states lie at the heart of all novel quantum phenomena in a pristine sheet of silicene, the question of whether or not these key states can survive when silicene is grown or supported on a substrate remains hotly debated. Here we report our direct observation of Dirac cones in monolayer silicene grown on a Ag(111) substrate. By performing angle-resolved photoemission measurements on silicene(3x3)/Ag(111), we reveal the presence of six pairs of Dirac cones on the edges of the first Brillouin zone of Ag(111), other than expected six Dirac cones at the K points of the primary silicene(1x1) Brillouin zone. Our result shows clearly that the unusual Dirac cone structure originates not from the pristine silicene alone but from the combined effect of silicene(3x3) and the Ag(111) substrate. This study identifies the first case of a new type of Dirac Fermion generated through the interaction of two different constituents. Our observation of Dirac cones in silicene/Ag(111) opens a new materials platform for investigating unusual quantum phenomena and novel applications based on two-dimensional silicon systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا