ترغب بنشر مسار تعليمي؟ اضغط هنا

Direct Evidence of Interaction-Induced Dirac Cones in Monolayer Silicene/Ag(111) System

144   0   0.0 ( 0 )
 نشر من قبل Xingjiang Zhou
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Silicene, analogous to graphene, is a one-atom-thick two-dimensional crystal of silicon which is expected to share many of the remarkable properties of graphene. The buckled honeycomb structure of silicene, along with its enhanced spin-orbit coupling, endows silicene with considerable advantages over graphene in that the spin-split states in silicene are tunable with external fields. Although the low-energy Dirac cone states lie at the heart of all novel quantum phenomena in a pristine sheet of silicene, the question of whether or not these key states can survive when silicene is grown or supported on a substrate remains hotly debated. Here we report our direct observation of Dirac cones in monolayer silicene grown on a Ag(111) substrate. By performing angle-resolved photoemission measurements on silicene(3x3)/Ag(111), we reveal the presence of six pairs of Dirac cones on the edges of the first Brillouin zone of Ag(111), other than expected six Dirac cones at the K points of the primary silicene(1x1) Brillouin zone. Our result shows clearly that the unusual Dirac cone structure originates not from the pristine silicene alone but from the combined effect of silicene(3x3) and the Ag(111) substrate. This study identifies the first case of a new type of Dirac Fermion generated through the interaction of two different constituents. Our observation of Dirac cones in silicene/Ag(111) opens a new materials platform for investigating unusual quantum phenomena and novel applications based on two-dimensional silicon systems.

قيم البحث

اقرأ أيضاً

86 - B. Feng , H. Zhou , Y. Feng 2019
Atomic scale engineering of two-dimensional materials could create devices with rich physical and chemical properties. External periodic potentials can enable the manipulation of the electronic band structures of materials. A prototypical system is 3 x3-silicene/Ag(111), which has substrate-induced periodic modulations. Recent angle-resolved photoemission spectroscopy measurements revealed six Dirac cone pairs at the Brillouin zone boundary of Ag(111), but their origin remains unclear [Proc. Natl. Acad. Sci. USA 113, 14656 (2016)]. We used linear dichroism angle-resolved photoemission spectroscopy, the tight-binding model, and first-principles calculations to reveal that these Dirac cones mainly derive from the original cones at the K (K) points of free-standing silicene. The Dirac cones of free-standing silicene are split by external periodic potentials that originate from the substrate-overlayer interaction. Our results not only confirm the origin of the Dirac cones in the 3x3-silicene/Ag(111) system, but also provide a powerful route to manipulate the electronic structures of two-dimensional materials.
We report first-principles calculations that clarify stability and electronic structures of silicene on Ag(111) surfaces. We find that several stable structures exist for silicene/Ag(111), exhibiting a variety of images of scanning tunneling microsco py. We also find that Dirac electrons are {em absent} near Fermi energy in all the stable structures due to buckling of the Si monolayer and mixing between Si and Ag orbitals. We instead propose that either BN substrate or hydrogen processing of Si surface is a good candidate to preserve Dirac electrons in silicene.
Monolayer AlB$_2$ is composed of two atomic layers: honeycomb borophene and triangular aluminum. In contrast with the bulk phase, monolayer AlB$_2$ is predicted to be a superconductor with a high critical temperature. Here, we demonstrate that monola yer AlB$_2$ can be synthesized on Al(111) via molecular beam epitaxy. Our theoretical calculations revealed that the monolayer AlB$_2$ hosts several Dirac cones along the $Gamma$--M and $Gamma$--K directions; these Dirac cones are protected by crystal symmetries and are thus resistant to external perturbations. The extraordinary electronic structure of the monolayer AlB$_2$ was confirmed via angle-resolved photoemission spectroscopy measurements. These results are likely to stimulate further research interest to explore the exotic properties arising from the interplay of Dirac fermions and superconductivity in two-dimensional materials.
We report on total-energy electronic-structure calculations in the density-functional theory performed for both monolayer and bilayer silicene on Ag(111) surfaces. The rt3 x rt3 structure observed experimentally and argued to be the monolayer silicen e in the past [Chen et al., Phys. Rev. Lett. 110, 085504 (2013)] is identified as the bilayer silicene on the Ag(111) surface. The identification is based on our accurate density-functional calculations in which three approximations, the local density approximation, the generalized-gradient approximation, and the van-der-Waals-density-functional approximation, to the exchange-correlation energy have been carefully examined. We find that the structural tristability exists for the rt3 x rt3 bilayer silicene. The calculated energy barriers among the three stable structures are in the range of 7 - 9 meV per Si atom, indicating possible flip-flop motions among the three. We have found that the flip-flop motion between the two of the three structures produces the honeycomb structure in the STM images, whereas the motion among the three does the 1 x 1 structure. We have found that the electron states which effectively follow Dirac equation in the freestanding silicene couple with the substrate Ag orbitals due to the bond formation, and shift downwards deep in the valence bands. This feature is common to all the stable or metastable silicene layer on the Ag(111) substrate.
Epitaxial graphene on Ir(111) prepared in excellent structural quality is investigated by angle-resolved photoelectron spectroscopy. It clearly displays a Dirac cone with the Dirac point shifted only slightly above the Fermi level. The moire resultin g from the overlaid graphene and Ir(111) surface lattices imposes a superperiodic potential giving rise to Dirac cone replicas and the opening of minigaps in the band structure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا