ﻻ يوجد ملخص باللغة العربية
A novel method for mapping the local spin and orbital nature of the ground state of a system via corresponding flip excitations in both sectors is proposed based on angle resolved resonant photoemission and related diffraction patterns, presented here for the first time via an ab-initio modified one-step theory of photoemission. The analysis is done on the paradigmatic weak itinerant ferromagnet bcc Fe, whose magnetism, seen as a correlation phenomenon given by the coexistence of localized moments and itinerant electrons, and the non-Fermi liquid behaviour at ambient and extreme conditions both remain unclear. The results offer a real space imaging of local pure spin flip and entangled spin flip-orbital flip excitations (even at energies where spin flip transitions are hidden in quasiparticle peaks) and of chiral, vortex-like wavefronts of excited electrons, depending on the orbital character of the bands and the direction of the local magnetic moment. Such effects, mediated by the hole polarization, make resonant photoemission a promising tool to perform a full tomography of the local magnetic properties of a system with a high sensitivity to localization/correlation, even in itinerant or macroscopically non magnetic systems.
A first principles approach, based on the real space multiple scattering Greens function method, is presented for spin- and angle-resolved resonant photoemission from magnetic surfaces. It is applied to the Fe(010) valence band photoemission excited
We have developed the numerical software package $chinook$, designed for the simulation of photoemission matrix elements. This quantity encodes a depth of information regarding the orbital structure of the underlying wavefunctions from which photoemi
A first principles approach for spin and angle resolved resonant photoemission is developed within multiple scattering theory and applied to a Cr(110) surface at the 2$p$-3$d$ resonance. The resonant photocurrent from this non ferromagnetic system is
The connection between the Fermi surface and charge-density wave (CDW) order is revisited in 2H-TaSe2. Using angle-resolved photoemission spectroscopy, ab initio band structure calculations, and an accurate tight-binding model, we develop the empiric
The ferrimagnetic spinel $mathrm{CoV_2O_4}$ has been a topic of intense recent interest, both as a frustrated insulator with unquenched orbital degeneracy and as a near-itinerant magnet which can be driven metallic with moderate applied pressure. Her