ﻻ يوجد ملخص باللغة العربية
A first principles approach, based on the real space multiple scattering Greens function method, is presented for spin- and angle-resolved resonant photoemission from magnetic surfaces. It is applied to the Fe(010) valence band photoemission excited with circularly polarized X-rays around the Fe L3 absorption edge. When the photon energy is swept through the Fe 2p-3d resonance, the valence band spectra are strongly modified in terms of absolute and relative peak intensities, degree of spin-polarization and light polarization dependence. New peaks in the spin-polarized spectra are identified as spin-flip transitions induced by exchange decay of spin-mixed core-holes. By comparison with single atom and band structure data, it is shown that both intra-atomic and multiple scattering effects strongly influence the spectra. We show how the different features linked to states of different orbital symmetry in the d band are differently enhanced by the resonant effect. The appearance and origin of circular dichroism and spin polarization are analyzed for different geometries of light incidence and electron emission direction, providing guidelines for future experiments.
The helical Dirac fermions at the surface of topological insulators show a strong circular dichroism which has been explained as being due to either the initial-state spin angular momentum, the initial-state orbital angular momentum, or the handednes
A novel method for mapping the local spin and orbital nature of the ground state of a system via corresponding flip excitations in both sectors is proposed based on angle resolved resonant photoemission and related diffraction patterns, presented her
Topological insulators are a new phase of matter that exhibits exotic surface electronic properties. Determining the spin texture of this class of material is of paramount importance for both fundamental understanding of its topological order and fut
We present an ab initio theory of core- and valence resonant inelastic x-ray scattering (RIXS) based on a real-space multiple scattering Greens function formalism and a quasi-boson model Hamiltonian. Simplifying assumptions are made which lead to an
We use angle-resolved photoemission with circularly polarized excitation to demonstrate that in the 5x1 superstructure-free Pb-Bi2212 material there are no signatures of time-reversal symmetry breaking in the sense of the criteria developed earlier (