ترغب بنشر مسار تعليمي؟ اضغط هنا

Phenomenological model for spectral broadening of incoherent light in fibers via self-phase modulation and dispersion

60   0   0.0 ( 0 )
 نشر من قبل Chaojie Zhang
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A phenomenological model for spectral broadening of incoherent light in silica fibers via self-phase modulation and dispersion is presented, aiming at providing a qualitative and readily accessible description of incoherent light spectral broadening. In this model, the incoherent light is approximated by a cosine power-modulated light with modulation parameters depending on the coherent time and the dispersion in fibers. A simple and practical method for spectral broadening predictions is given and demonstrated by both the straightforward NLSE-based numerical modeling and series of experiments including narrowband and broadband incoherent light in passive fibers and fiber amplifiers.



قيم البحث

اقرأ أيضاً

The propagation of a continuous wave in the average anomalous dispersion region of a dispersion oscillating fiber is investigated numerically and experimentally. We demonstrate that the train of solitons arising from modulation instability is strongl y affected by the periodic variations of the fiber dispersion. This leads to the emission of multiple resonant radiations located on both sides of the spectrum. Numerical simulations confirm the experimental results and the position of the resonant radiations is well predicted by means of perturbation theory.
We present the first experimental observation of modulation instability of partially spatially incoherent light beams in non-instantaneous nonlinear media. We show that even in such a nonlinear partially coherent system (of weakly-correlated particle s) patterns can form spontaneously. Incoherent MI occurs above a specific threshold that depends on the beams coherence properties (correlation distance), and leads to a periodic train of one-dimensional (1D) filaments. At a higher value of nonlinearity, incoherent MI displays a two-dimensional (2D) instability and leads to self-ordered arrays of light spots.
A simple analytical model is developed to analyze and explain the complex dynamics of the multi-peak modulation instability spectrum observed in dispersion oscillating optical fibers [M. Droques et al., 37, 4832-4834 Opt. Lett., (2012)]. We provide a simple expression for the local parametric gain which shows that each of the multiple spectral components grows thanks to a quasi-phase-matching mechanism due to the periodicity of the waveguide parameters, in good agreement with numerical simulations and experiments. This simplified model is also successfully used to tailor the multi-peak modulation instability spectrum shape. These theoretical predictions are confirmed by experiments.
151 - P. Kinsler 2011
I study how pulse to pulse phase coherence in a pulse train can survive super-broadening by extreme self phase modulation (SPM). Such pulse trains have been used in phase self-stabilizing schemes as an alternative to using a feedback process. However , such super-broadened pulses have undergone considerable distortion, and it is far from obvious that they necessarily retain any useful phase information. I propose measures of phase coherence (i.e. supercontinuum coherence) applicable to such pulse trains, and use them to analyze numerical simulations comparable to self-stabilization experiments.
We show that the velocity and thus the frequency of a signal pulse can be adjusted by the use of a control Airy pulse. In particular, we utilize a nonlinear Airy pulse which, via cross-phase modulation, creates an effective potential for the optical signal. Interestingly, during the interaction, the signal dispersion is suppressed. Importantly, the whole process is controllable and by using Airy pulses with different truncations leads to predetermined values of the frequency shifting. Such a functionality might be useful in wavelength division multiplexing networks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا