ﻻ يوجد ملخص باللغة العربية
A simple analytical model is developed to analyze and explain the complex dynamics of the multi-peak modulation instability spectrum observed in dispersion oscillating optical fibers [M. Droques et al., 37, 4832-4834 Opt. Lett., (2012)]. We provide a simple expression for the local parametric gain which shows that each of the multiple spectral components grows thanks to a quasi-phase-matching mechanism due to the periodicity of the waveguide parameters, in good agreement with numerical simulations and experiments. This simplified model is also successfully used to tailor the multi-peak modulation instability spectrum shape. These theoretical predictions are confirmed by experiments.
The propagation of a continuous wave in the average anomalous dispersion region of a dispersion oscillating fiber is investigated numerically and experimentally. We demonstrate that the train of solitons arising from modulation instability is strongl
We study, both theoretically and experimentally, modulational instability in optical fibers that have a longitudinal evolution of their dispersion in the form of a Dirac delta comb. By means of Floquet theory, we obtain an exact expression for the po
We study modulational instability (MI) in optical fibers with random group velocity dispersion (GVD) generated by sharply localized perturbations of a normal GVD fiber that are either randomly or periodically placed along the fiber and that have rand
Previous studies of the modulation instability (MI) of continuous waves (CWs) in a two-core fiber (TCF) did not consider effects caused by co-propagation of the two polarized modes in a TCF that possesses birefringence, such as cross-phase modulation
In optical second harmonic generation with normal dispersion, the virtually infinite bandwidth of the unbounded, hyperbolic, modulational instability leads to quenching of spatial multi-soliton formation and to the occurrence of a catastrophic spatio