ترغب بنشر مسار تعليمي؟ اضغط هنا

Inelastic photon scattering via the intracavity Rydberg blockade

92   0   0.0 ( 0 )
 نشر من قبل Etienne Brion
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Electromagnetically induced transparency (EIT) in a ladder system involving a Rydberg level is known to yield giant optical nonlinearities for the probe field, even in the few-photon regime. This enhancement is due to the strong dipole-dipole interactions between Rydberg atoms and the resulting excitation blockade phenomenon. In order to study such highly correlated media, ad hoc models or low-excitation assumptions are generally used to tackle their dynamical response to optical fields. Here, we study the behaviour of a cavity Rydberg-EIT setup in the non-equilibrium quantum field formalism, and we obtain analytic expressions for elastic and inelastic components of the cavity transmission spectrum, valid up to higher excitation numbers than previously achieved. This allows us to identify and interpret a polaritonic resonance structure, to our knowledge unreported so far.



قيم البحث

اقرأ أيضاً

211 - G. W. Lin , Y. H. Qi , X. M. Lin 2013
We consider the dynamics of intracavity electromagnetically induced transparency (EIT) in an ensemble of strongly interacting Rydberg atoms. By combining the advantage of variable cavity lifetimes with intracavity EIT and strongly interacting Rydberg dark-state polaritons, we show that such intracavity EIT system could exhibit very strong photon blockade effect.
90 - Xiao-Qiang Shao 2020
The resonant dipole-dipole interaction between highly excited Rydberg levels dominates the interaction of neutral atoms at short distances scaling as $1/r^3$. Here we take advantage of the combined effects of strong dipole-dipole interaction and mult ifrequency driving fields to propose one type of selective Rydberg pumping mechanism. In the computational basis of two atoms ${|00rangle, |01rangle,|10rangle,|11rangle}$, this mechanism allows $|11rangle$ to be resonantly pumped upwards to the single-excited Rydberg states while the transitions of the other three states are suppressed. From the perspective of mathematical form, we achieve an analogous F{o}ster resonance for ground states of neutral atoms. The performance of this selective Rydberg pumping is evaluated using the definition of fidelity for controlled-$Z$ gate, which manifests a characteristic of robustness to deviation of interatomic distance, fluctuation of F{o}ster resonance defect, and spontaneous emission of double-excited Rydberg states. As applications of this mechanism, we discuss in detail the preparation of the maximally entangled symmetric state for two atoms via ground-state blockade, and the maximally entangled antisymmetric state via engineered spontaneous emission, within the state-of-the-art experiments, respectively.
We demonstrate the first deterministic entanglement of two individually addressed neutral atoms using a Rydberg blockade mediated controlled-NOT gate. Parity oscillation measurements reveal an entanglement fidelity of $F=0.58pm0.04$, which is above t he entanglement threshold of $F=0.5$, without any correction for atom loss, and $F=0.71pm0.05$ after correcting for background collisional losses. The fidelity results are shown to be in good agreement with a detailed error model.
308 - L. Isenhower , M. Saffman , 2011
Long range Rydberg blockade interactions have the potential for efficient implementation of quantum gates between multiple atoms. Here we present and analyze a protocol for implementation of a $k$-atom controlled NOT (C$_k$NOT) neutral atom gate. Thi s gate can be implemented using sequential or simultaneous addressing of the control atoms which requires only $2k+3$ or 5 Rydberg $pi$ pulses respectively. A detailed error analysis relevant for implementations based on alkali atom Rydberg states is provided which shows that gate errors less than 10% are possible for $k=35$.
122 - Y. Zeng , P. Xu , X.D. He 2017
Quantum entanglement is crucial for simulating and understanding exotic physics of strongly correlated many-body systems, such as high--temperature superconductors, or fractional quantum Hall states. The entanglement of non-identical particles exhibi ts richer physics of strong many-body correlations and offers more opportunities for quantum computation, especially with neutral atoms where in contrast to ions the interparticle interaction is widely tunable by Feshbach resonances. Moreover, the inter-species entanglement forms a basis for the properties of various compound systems, ranging from Bose-Bose mixtures to photosynthetic light-harvesting complexes. So far, the inter-species entanglement has only been obtained for trapped ions. Here we report on the experimental realization of entanglement of two neutral atoms of different isotopes. A ${}^{87}mathrm{Rb}$ atom and a ${}^{85}mathrm{Rb}$ atom are confined in two single--atom optical traps separated by 3.8 $mu$m. Creating a strong Rydberg blockade, we demonstrate a heteronuclear controlled--NOT (C--NOT) quantum gate and generate a heteronuclear entangled state, with raw fidelities $0.73 pm 0.01$ and $0.59 pm 0.03$, respectively. Our work, together with the technologies of single--qubit gate and C--NOT gate developed for identical atoms, can be used for simulating any many--body system with multi-species interactions. It also has applications in quantum computing and quantum metrology, since heteronuclear systems exhibit advantages in low crosstalk and in memory protection.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا