ﻻ يوجد ملخص باللغة العربية
In this paper, joint limit distributions of maxima and minima on independent and non-identically distributed bivariate Gaussian triangular arrays is derived as the correlation coefficient of $i$th vector of given $n$th row is the function of $i/n$. Furthermore, second-order expansions of joint distributions of maxima and minima are established if the correlation function satisfies some regular conditions.
We provide necessary and sufficient conditions for hypercontractivity of the minima of nonnegative, i.i.d. random variables and of both the maxima of minima and the minima of maxima for such r.v.s. It turns out that the idea of hypercontractivity for
Existing generalization theories analyze the generalization performance mainly based on the model complexity and training process. The ignorance of the task properties, which results from the widely used IID assumption, makes these theories fail to i
Let U be a Haar distributed unitary matrix in U(n)or O(n). We show that after centering the double index process $$ W^{(n)} (s,t) = sum_{i leq lfloor ns rfloor, j leq lfloor ntrfloor} |U_{ij}|^2 $$ converges in distribution to the bivariate tied-down
We aim to estimate the probability that the sum of nonnegative independent and identically distributed random variables falls below a given threshold, i.e., $mathbb{P}(sum_{i=1}^{N}{X_i} leq gamma)$, via importance sampling (IS). We are particularly
In this paper, joint asymptotics of powered maxima for a triangular array of bivariate powered Gaussian random vectors are considered. Under the Husler-Reiss condition, limiting distributions of powered maxima are derived. Furthermore, the second-ord