ﻻ يوجد ملخص باللغة العربية
We aim to estimate the probability that the sum of nonnegative independent and identically distributed random variables falls below a given threshold, i.e., $mathbb{P}(sum_{i=1}^{N}{X_i} leq gamma)$, via importance sampling (IS). We are particularly interested in the rare event regime when $N$ is large and/or $gamma$ is small. The exponential twisting is a popular technique that, in most of the cases, compares favorably to existing estimators. However, it has several limitations: i) it assumes the knowledge of the moment generating function of $X_i$ and ii) sampling under the new measure is not straightforward and might be expensive. The aim of this work is to propose an alternative change of measure that yields, in the rare event regime corresponding to large $N$ and/or small $gamma$, at least the same performance as the exponential twisting technique and, at the same time, does not introduce serious limitations. For distributions whose probability density functions (PDFs) are $mathcal{O}(x^{d})$, as $x rightarrow 0$ and $d>-1$, we prove that the Gamma IS PDF with appropriately chosen parameters retrieves asymptotically, in the rare event regime, the same performance of the estimator based on the use of the exponential twisting technique. Moreover, in the Log-normal setting, where the PDF at zero vanishes faster than any polynomial, we numerically show that a Gamma IS PDF with optimized parameters clearly outperforms the exponential twisting change of measure. Numerical experiments validate the efficiency of the proposed estimator in delivering a highly accurate estimate in the regime of large $N$ and/or small $gamma$.
The distribution of sum of independent non-identical binomial random variables is frequently encountered in areas such as genomics, healthcare, and operations research. Analytical solutions to the density and distribution are usually cumbersome to fi
We consider Particle Gibbs (PG) as a tool for Bayesian analysis of non-linear non-Gaussian state-space models. PG is a Monte Carlo (MC) approximation of the standard Gibbs procedure which uses sequential MC (SMC) importance sampling inside the Gibbs
Bayesian methods and their implementations by means of sophisticated Monte Carlo techniques have become very popular in signal processing over the last years. Importance Sampling (IS) is a well-known Monte Carlo technique that approximates integrals
The Adaptive Multiple Importance Sampling (AMIS) algorithm is aimed at an optimal recycling of past simulations in an iterated importance sampling scheme. The difference with earlier adaptive importance sampling implementations like Population Monte
Monte Carlo methods represent the de facto standard for approximating complicated integrals involving multidimensional target distributions. In order to generate random realizations from the target distribution, Monte Carlo techniques use simpler pro