ترغب بنشر مسار تعليمي؟ اضغط هنا

A Skorokhod Map on Measure-Valued Paths with Applications to Priority Queues

97   0   0.0 ( 0 )
 نشر من قبل Kavita Ramanan
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The Skorokhod map on the half-line has proved to be a useful tool for studying processes with non-negativity constraints. In this work we introduce a measure-valued analog of this map that transforms each element $zeta$ of a certain class of c`{a}dl`{a}g paths that take values in the space of signed measures on the half-line to a c`{a}dl`{a}g path that takes values in the space of non-negative measures on $[0,infty)$ in such a way that for each $x > 0$, the path $t mapsto zeta_t[0,x]$ is transformed via a Skorokhod map on the half-line, and the regulating functions for different $x > 0$ are coupled. We establish regularity properties of this map and show that the map provides a convenient tool for studying queueing systems in which tasks are prioritized according to a continuous parameter. Three such well known models are the earliest-deadline-first, the shortest-job-first and the shortest-remaining-processing-time scheduling policies. For these applications, we show how the map provides a unified framework within which to form fluid model equations, prove uniqueness of solutions to these equations and establish convergence of scaled state processes to the fluid model. In particular, for these models, we obtain new convergence results in time-inhomogeneous settings, which appear to fall outside the purview of existing approaches.



قيم البحث

اقرأ أيضاً

The Skorokhod map is a convenient tool for constructing solutions to stochastic differential equations with reflecting boundary conditions. In this work, an explicit formula for the Skorokhod map $Gamma_{0,a}$ on $[0,a]$ for any $a>0$ is derived. Spe cifically, it is shown that on the space $mathcal{D}[0,infty)$ of right-continuous functions with left limits taking values in $mathbb{R}$, $Gamma_{0,a}=Lambda_acirc Gamma_0$, where $Lambda_a:mathcal{D}[0,infty)tomathcal{D}[0,infty)$ is defined by [Lambda_a(phi)(t)=phi(t)-sup_{sin[0,t]}biggl[bigl( phi(s)-abigr)^+wedgeinf_{uin[s,t]}phi(u)biggr]] and $Gamma_0:mathcal{D}[0,infty)tomathcal{D}[0,infty)$ is the Skorokhod map on $[0,infty)$, which is given explicitly by [Gamma_0(psi)(t)=psi(t)+sup_{sin[0,t]}[-psi(s)]^+.] In addition, properties of $Lambda_a$ are developed and comparison properties of $Gamma_{0,a}$ are established.
The large-time behavior of a nonlinearly coupled pair of measure-valued transport equations with discontinuous boundary conditions, parameterized by a positive real-valued parameter $lambda$, is considered. These equations describe the hydrodynamic o r fluid limit of many-server queues with reneging (with traffic intensity $lambda$), which model phenomena in diverse disciplines, including biology and operations research. For a broad class of reneging distributions with finite mean and service distributions with finite mean and hazard rate function that is either decreasing or bounded away from zero and infinity, it is shown that if the fluid equations have a unique invariant state, then the Dirac measure at this state is the unique random fixed point of the fluid equations, which implies that the stationary distributions of scaled $N$-server systems converge to the unique invariant state of the corresponding fluid equations. Moreover, when $lambda e 1$, it is shown that the solution to the fluid equation starting from any initial condition converges to this unique invariant state in the large time limit. The proof techniques are different under the two sets of assumptions on the service distribution. When the hazard rate function is decreasing, a reformulation of the dynamics in terms of a certain renewal equation is used, in conjunction with recursive asymptotic estimates. When the hazard rate function is bounded away from zero and infinity, the proof uses an extended relative entropy functional as a Lyapunov function. Analogous large-time convergence results are also established for a system of coupled measure-valued equations modeling a multiclass queue.
We consider a class of stochastic control problems where the state process is a probability measure-valued process satisfying an additional martingale condition on its dynamics, called measure-valued martingales (MVMs). We establish the `classical re sults of stochastic control for these problems: specifically, we prove that the value function for the problem can be characterised as the unique solution to the Hamilton-Jacobi-Bellman equation in the sense of viscosity solutions. In order to prove this result, we exploit structural properties of the MVM processes. Our results also include an appropriate version of It^os lemma for controlled MVMs. We also show how problems of this type arise in a number of applications, including model-independent derivatives pricing, the optimal Skorokhod embedding problem, and two player games with asymmetric information.
We give a pathwise construction of a two-parameter family of purely-atomic-measure-valued diffusions in which ranked masses of atoms are stationary with the Poisson-Dirichlet$(alpha,theta)$ distributions, for $alphain (0,1)$ and $thetage 0$. This res olves a conjecture of Feng and Sun (2010). We build on our previous work on $(alpha,0)$- and $(alpha,alpha)$-interval partition evolutions. Indeed, we first extract a self-similar superprocess from the levels of stable processes whose jumps are decorated with squared Bessel excursions and distinct allelic types. We complete our construction by time-change and normalisation to unit mass. In a companion paper, we show that the ranked masses of the measure-valued processes evolve according to a two-parameter family of diffusions introduced by Petrov (2009), extending work of Ethier and Kurtz (1981). These ranked-mass diffusions arise as continuum limits of up-down Markov chains on Chinese restaurant processes.
In this article we formalize the problem of modeling social networks into a measure-valued process and interacting particle system. We obtain a model that describes in continuous time each vertex of the graph at a latent spatial state as a Dirac meas ure. We describe the model and its formal design as a Markov process on finite and connected geometric graphs with values in path space. A careful analysis of some microscopic properties of the underlying process is provided. Moreover, we study the long time behavior of the stochastic particle system. Using a renormalization technique, which has the effect that the density of the vertices must grow to infinity, we show that the rescaled measure-valued process converges in law towards the solution of a deterministic equation. The strength of our general continuous time and measure-valued dynamical system is that their results are context-free, that is, that hold for arbitrary sequences of graphs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا