ﻻ يوجد ملخص باللغة العربية
The Skorokhod map on the half-line has proved to be a useful tool for studying processes with non-negativity constraints. In this work we introduce a measure-valued analog of this map that transforms each element $zeta$ of a certain class of c`{a}dl`{a}g paths that take values in the space of signed measures on the half-line to a c`{a}dl`{a}g path that takes values in the space of non-negative measures on $[0,infty)$ in such a way that for each $x > 0$, the path $t mapsto zeta_t[0,x]$ is transformed via a Skorokhod map on the half-line, and the regulating functions for different $x > 0$ are coupled. We establish regularity properties of this map and show that the map provides a convenient tool for studying queueing systems in which tasks are prioritized according to a continuous parameter. Three such well known models are the earliest-deadline-first, the shortest-job-first and the shortest-remaining-processing-time scheduling policies. For these applications, we show how the map provides a unified framework within which to form fluid model equations, prove uniqueness of solutions to these equations and establish convergence of scaled state processes to the fluid model. In particular, for these models, we obtain new convergence results in time-inhomogeneous settings, which appear to fall outside the purview of existing approaches.
The Skorokhod map is a convenient tool for constructing solutions to stochastic differential equations with reflecting boundary conditions. In this work, an explicit formula for the Skorokhod map $Gamma_{0,a}$ on $[0,a]$ for any $a>0$ is derived. Spe
The large-time behavior of a nonlinearly coupled pair of measure-valued transport equations with discontinuous boundary conditions, parameterized by a positive real-valued parameter $lambda$, is considered. These equations describe the hydrodynamic o
We consider a class of stochastic control problems where the state process is a probability measure-valued process satisfying an additional martingale condition on its dynamics, called measure-valued martingales (MVMs). We establish the `classical re
We give a pathwise construction of a two-parameter family of purely-atomic-measure-valued diffusions in which ranked masses of atoms are stationary with the Poisson-Dirichlet$(alpha,theta)$ distributions, for $alphain (0,1)$ and $thetage 0$. This res
In this article we formalize the problem of modeling social networks into a measure-valued process and interacting particle system. We obtain a model that describes in continuous time each vertex of the graph at a latent spatial state as a Dirac meas