ﻻ يوجد ملخص باللغة العربية
We consider a class of stochastic control problems where the state process is a probability measure-valued process satisfying an additional martingale condition on its dynamics, called measure-valued martingales (MVMs). We establish the `classical results of stochastic control for these problems: specifically, we prove that the value function for the problem can be characterised as the unique solution to the Hamilton-Jacobi-Bellman equation in the sense of viscosity solutions. In order to prove this result, we exploit structural properties of the MVM processes. Our results also include an appropriate version of It^os lemma for controlled MVMs. We also show how problems of this type arise in a number of applications, including model-independent derivatives pricing, the optimal Skorokhod embedding problem, and two player games with asymmetric information.
The large-time behavior of a nonlinearly coupled pair of measure-valued transport equations with discontinuous boundary conditions, parameterized by a positive real-valued parameter $lambda$, is considered. These equations describe the hydrodynamic o
This paper investigates sufficient conditions for a Feynman-Kac functional up to an exit time to be the generalized viscosity solution of a Dirichlet problem. The key ingredient is to find out the continuity of exit operator under Skorokhod topology,
The non-exponential Schilder-type theorem in Backhoff-Veraguas, Lacker and Tangpi [Ann. Appl. Probab., 30 (2020), pp. 1321-1367] is expressed as a convergence result for path-dependent partial differential equations with appropriate notions of genera
We present novel martingale concentration inequalities for martingale differences with finite Orlicz-$psi_alpha$ norms. Such martingale differences with weak exponential-type tails scatters in many statistical applications and can be heavier than sub
In this paper we address an open question formulated in [17]. That is, we extend the It{^o}-Tanaka trick, which links the time-average of a deterministic function f depending on a stochastic process X and F the solution of the Fokker-Planck equation