ﻻ يوجد ملخص باللغة العربية
Many retailers today employ inventory management systems based on Re-Order Point Policies, most of which rely on the assumption that all decreases in product inventory levels result from product sales. Unfortunately, it usually happens that small but random quantities of the product get lost, stolen or broken without record as time passes, e.g., as a consequence of shoplifting. This is usual for retailers handling large varieties of inexpensive products, e.g., grocery stores. In turn, over time these discrepancies lead to stock freezing problems, i.e., situations where the system believes the stock is above the re-order point but the actual stock is at zero, and so no replenishments or sales occur. Motivated by these issues, we model the interaction between sales, losses, replenishments and inventory levels as a Dynamic Bayesian Network (DBN), where the inventory levels are unobserved (i.e., hidden) variables we wish to estimate. We present an Expectation-Maximization (EM) algorithm to estimate the parameters of the sale and loss distributions, which relies on solving a one-dimensional dynamic program for the E-step and on solving two separate one-dimensional nonlinear programs for the M-step.
Self-reinforcing feedback loops in personalization systems are typically caused by users choosing from a limited set of alternatives presented systematically based on previous choices. We propose a Bayesian choice model built on Luce axioms that expl
Measuring and evaluating network resilience has become an important aspect since the network is vulnerable to both uncertain disturbances and malicious attacks. Networked systems are often composed of many dynamic components and change over time, whi
We show theoretical similarities between the Least Squares Support Vector Regression (LS-SVR) model with a Radial Basis Functions (RBF) kernel and maximum a posteriori (MAP) inference on Bayesian RBF networks with a specific Gaussian prior on the reg
Encoding domain knowledge into the prior over the high-dimensional weight space of a neural network is challenging but essential in applications with limited data and weak signals. Two types of domain knowledge are commonly available in scientific ap
Public special events, like sports games, concerts and festivals are well known to create disruptions in transportation systems, often catching the operators by surprise. Although these are usually planned well in advance, their impact is difficult t