ترغب بنشر مسار تعليمي؟ اضغط هنا

Online EM for Functional Data

391   0   0.0 ( 0 )
 نشر من قبل Florian Maire
 تاريخ النشر 2016
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

A novel approach to perform unsupervised sequential learning for functional data is proposed. Our goal is to extract reference shapes (referred to as templates) from noisy, deformed and censored realizations of curves and images. Our model generalizes the Bayesian dense deformable template model (Allassonni`ere et al., 2007), a hierarchical model in which the template is the function to be estimated and the deformation is a nuisance, assumed to be random with a known prior distribution. The templates are estimated using a Monte Carlo version of the online Expectation-Maximization algorithm, extending the work from Cappe and Moulines (2009). Our sequential inference framework is significantly more computationally efficient than equivalent batch learning algorithms, especially when the missing data is high-dimensional. Some numerical illustrations on curve registration problem and templates extraction from images are provided to support our findings.



قيم البحث

اقرأ أيضاً

214 - Olivier Cappe 2017
In this contribution, we propose a generic online (also sometimes called adaptive or recursive) version of the Expectation-Maximisation (EM) algorithm applicable to latent variable models of independent observations. Compared to the algorithm of Titt erington (1984), this approach is more directly connected to the usual EM algorithm and does not rely on integration with respect to the complete data distribution. The resulting algorithm is usually simpler and is shown to achieve convergence to the stationary points of the Kullback-Leibler divergence between the marginal distribution of the observation and the model distribution at the optimal rate, i.e., that of the maximum likelihood estimator. In addition, the proposed approach is also suitable for conditional (or regression) models, as illustrated in the case of the mixture of linear regressions model.
Nowadays, the confidentiality of data and information is of great importance for many companies and organizations. For this reason, they may prefer not to release exact data, but instead to grant researchers access to approximate data. For example, r ather than providing the exact income of their clients, they may only provide researchers with grouped data, that is, the number of clients falling in each of a set of non-overlapping income intervals. The challenge is to estimate the mean and variance structure of the hidden ungrouped data based on the observed grouped data. To tackle this problem, this work considers the exact observed data likelihood and applies the Expectation-Maximization (EM) and Monte-Carlo EM (MCEM) algorithms for cases where the hidden data follow a univariate, bivariate, or multivariate normal distribution. The results are then compared with the case of ignoring the grouping and applying regular maximum likelihood. The well-known Galton data and simulated datasets are used to evaluate the properties of the proposed EM and MCEM algorithms.
The study of the dynamic behavior of cross-sectional ranks over time for functional data and the ranks of the observed curves at each time point and their temporal evolution can yield valuable insights into the time dynamics of functional data. This approach is of interest in various application areas. For the analysis of the dynamics of ranks, estimation of the cross-sectional ranks of functional data is a first step. Several statistics of interest for ranked functional data are proposed. To quantify the evolution of ranks over time, a model for rank derivatives is introduced, where rank dynamics are decomposed into two components. One component corresponds to population changes and the other to individual changes that both affect the rank trajectories of individuals. The joint asymptotic normality for suitable estimates of these two components is established. The proposed approaches are illustrated with simulations and three longitudinal data sets: Growth curves obtained from the Zurich Longitudinal Growth Study, monthly house price data in the US from 1996 to 2015 and Major League Baseball offensive data for the 2017 season.
This paper describes a data reduction technique in case of a markov chain of specified order. Instead of observing all the transitions in a markov chain we record only a few of them and treat the remaining part as missing. The decision about which tr ansitions to be filtered is taken before the observation process starts. Based on the filtered chain we try to estimate the parameters of the markov model using EM algorithm. In the first half of the paper we characterize a class of filtering mechanism for which all the parameters remain identifiable. In the later half we explain methods of estimation and testing about the transition probabilities of the markov chain based on the filtered data. The methods are first developed assuming a simple markov model with each probability of transition positive, but then generalized for models with structural zeroes in the transition probability matrix. Further extension is also done for multiple markov chains. The performance of the developed method of estimation is studied using simulated data along with a real life data.
We propose an alternative to $k$-nearest neighbors for functional data whereby the approximating neighboring curves are piecewise functions built from a functional sample. Using a locally defined distance function that satisfies stabilization criteri a, we establish pointwise and global approximation results in function spaces when the number of data curves is large enough. We exploit this feature to develop the asymptotic theory when a finite number of curves is observed at time-points given by an i.i.d. sample whose cardinality increases up to infinity. We use these results to investigate the problem of estimating unobserved segments of a partially observed functional data sample as well as to study the problem of functional classification and outlier detection. For such problems, our methods are competitive with and sometimes superior to benchmark predictions in the field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا