ترغب بنشر مسار تعليمي؟ اضغط هنا

Obtaining Atomic Matrix Elements from Vector Tune-Out Wavelengths using Atom Interferometry

59   0   0.0 ( 0 )
 نشر من قبل Charles Sackett
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Accurate values for atomic dipole matrix elements are useful in many areas of physics, and in particular for interpreting experiments such as atomic parity violation. Obtaining accurate matrix element values is a challenge for both experiment and theory. A new technique that can be applied to this problem is tune-out spectroscopy, which is the measurement of light wavelengths where the electric polarizability of an atom has a zero. Using atom interferometry methods, tune-out wavelengths can be measured very accurately. Their values depend on the ratios of various dipole matrix elements and are thus useful for constraining theory and broadening the application of experimental values. Tune-out wavelength measurements to date have focused on zeros of the scalar polarizability, but in general the vector polarizability also contributes. We show here that combined measurements of the vector and scalar polarizabilities can provide more detailed information about the matrix element ratios, and in particular can distinguish small contributions from the atomic core and the valence tail states. These small contributions are the leading error sources in current parity violation calculations for cesium.

قيم البحث

اقرأ أيضاً

112 - U. Dammalapati , K. Harada , 2016
The frequency dependent polarizabilities of the francium atom are calculated from the available data of energy levels and transition rates. Magic wavelengths for the state insensitive optical dipole trapping are identified from the calculated light s hifts of the $7s~^2S_{1/2}$, $7p~^2P_{1/2, 3/2}$ and $8s~^{2}S_{1/2}$ levels of the $7s~^{2}S_{1/2}-7p~^{2}P_{1/2,3/2}$ and $7s~^{2}S_{1/2}-8s~^{2}S_{1/2}$ transitions, respectively. Wavelengths in the ultraviolet, visible and near infrared region is identified that are suitable for cooling and trapping. Magic wavelengths between 600-700~nm and 700-1000~nm region, which are blue and red detuned with the $7s-7p$ and $7s-8s$ transitions are feasible to implement as lasers with sufficient power are available. In addition, we calculated the tune-out wavelengths where the ac polarizability of the ground $7s~^{2}S_{1/2}$ state in francium is zero. These results are beneficial as laser cooled and trapped francium has been in use for fundamental symmetry investigations like searches for an electron permanent electric dipole moment in an atom and for atomic parity non-conservation.
Motivated by recent interest in their applications, we report a systematic study of Cs atomic properties calculated by a high-precision relativistic all-order method. Excitation energies, reduced matrix elements, transition rates, and lifetimes are d etermined for levels with principal quantum numbers $n leq 12$ and orbital angular momentum quantum numbers $l leq 3$. Recommended values and estimates of uncertainties are provided for a number of electric-dipole transitions and the electric dipole polarizabilities of the $ns$, $np$, and $nd$ states. We also report a calculation of the electric quadrupole polarizability of the ground state. We display the dynamic polarizabilities of the $6s$ and $7p$ states for optical wavelengths between 1160 nm and 1800 nm and identify corresponding magic wavelengths for the $6s-7p_{1/2}$, $6s-7p_{3/2}$ transitions. The values of relevant matrix elements needed for polarizability calculations at other wavelengths are provided.
We present additional magic wavelengths ($lambda_{rm{magic}}$) for the clock transitions in the alkaline-earth metal ions considering circular polarized light aside from our previously reported values in [J. Kaur et al., Phys. Rev. A {bf 92}, 031402( R) (2015)] for the linearly polarized light. Contributions from the vector component to the dynamic dipole polarizabilities ($alpha_d(omega)$) of the atomic states associated with the clock transitions play major roles in the evaluation of these $lambda_{rm{magic}}$, hence facilitating in choosing circular polarization of lasers in the experiments. Moreover, the actual clock transitions in these ions are carried out among the hyperfine levels. The $lambda_{rm{magic}}$ values in these hyperfine transitions are estimated and found to be different from $lambda_{rm{magic}}$ for the atomic transitions due to different contributions coming from the vector and tensor part of $alpha_d(omega)$. Importantly, we also present $lambda_{rm{magic}}$ values that depend only on the scalar component of $alpha_d(omega)$ for their uses in a specially designed trap geometry for these ions so that they can be used unambiguously among any hyperfine levels of the atomic states of the clock transitions. We also present $alpha_d(omega)$ values explicitly at the 1064 nm for the atomic states associated with the clock transitions which may be useful for creating high-field seeking traps for the above ions using the Nd:YAG laser. The tune out wavelengths at which the states would be free from the Stark shifts are also presented. Accurate values of the electric dipole matrix elements required for these studies are given and trends of electron correlation effects in determining them are also highlighted.
We present a compact $^{87}$Rb atomic source for high precision dual atom interferometers. The source is based on a double-stage magneto-optical trap (MOT) design, consisting of a 2-dimensional (2D)-MOT for efficient loading of a 3D-MOT. The accumula ted atoms are precisely launched in a horizontal moving molasses. Our setup generates a high atomic flux ($>10^{10}$ atoms/s) with precise and flexibly tunable atomic trajectories as required for high resolution Sagnac atom interferometry. We characterize the performance of the source with respect to the relevant parameters of the launched atoms, i.e. temperature, absolute velocity and pointing, by utilizing time-of-flight techniques and velocity selective Raman transitions.
We have developed an atom interferometer providing a full inertial base. This device uses two counter-propagating cold-atom clouds that are launched in strongly curved parabolic trajectories. Three single Raman beam pairs, pulsed in time, are success ively applied in three orthogonal directions leading to the measurement of the three axis of rotation and acceleration. In this purpose, we introduce a new atom gyroscope using a butterfly geometry. We discuss the present sensitivity and the possible improvements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا